Normalized defining polynomial
\( x^{12} - 3 x^{11} - 99 x^{10} + 136 x^{9} + 3552 x^{8} - 84 x^{7} - 54369 x^{6} - 53109 x^{5} + \cdots - 333136 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(29428267022381449968353937\) \(\medspace = 3^{16}\cdot 7^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(132.56\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{4/3}7^{2/3}17^{3/4}\approx 132.55528790956586$ | ||
Ramified primes: | \(3\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1071=3^{2}\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1071}(64,·)$, $\chi_{1071}(1,·)$, $\chi_{1071}(1033,·)$, $\chi_{1071}(970,·)$, $\chi_{1071}(781,·)$, $\chi_{1071}(718,·)$, $\chi_{1071}(625,·)$, $\chi_{1071}(562,·)$, $\chi_{1071}(883,·)$, $\chi_{1071}(820,·)$, $\chi_{1071}(373,·)$, $\chi_{1071}(310,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{3}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{7}-\frac{1}{8}a^{4}+\frac{1}{8}a^{3}-\frac{3}{8}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{18\!\cdots\!72}a^{11}+\frac{50\!\cdots\!59}{18\!\cdots\!72}a^{10}-\frac{11\!\cdots\!49}{18\!\cdots\!72}a^{9}+\frac{14\!\cdots\!17}{19\!\cdots\!88}a^{8}-\frac{40\!\cdots\!35}{11\!\cdots\!17}a^{7}-\frac{19\!\cdots\!95}{45\!\cdots\!68}a^{6}-\frac{29\!\cdots\!65}{18\!\cdots\!72}a^{5}-\frac{58\!\cdots\!35}{18\!\cdots\!72}a^{4}-\frac{27\!\cdots\!55}{18\!\cdots\!72}a^{3}+\frac{10\!\cdots\!91}{90\!\cdots\!36}a^{2}-\frac{53\!\cdots\!39}{45\!\cdots\!68}a+\frac{84\!\cdots\!44}{24\!\cdots\!11}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{47\!\cdots\!91}{18\!\cdots\!72}a^{11}-\frac{29\!\cdots\!97}{18\!\cdots\!72}a^{10}-\frac{36\!\cdots\!13}{18\!\cdots\!72}a^{9}+\frac{93\!\cdots\!27}{96\!\cdots\!44}a^{8}+\frac{25\!\cdots\!69}{45\!\cdots\!68}a^{7}-\frac{75\!\cdots\!59}{45\!\cdots\!68}a^{6}-\frac{13\!\cdots\!07}{18\!\cdots\!72}a^{5}+\frac{12\!\cdots\!73}{18\!\cdots\!72}a^{4}+\frac{74\!\cdots\!89}{18\!\cdots\!72}a^{3}+\frac{19\!\cdots\!03}{11\!\cdots\!17}a^{2}-\frac{14\!\cdots\!27}{22\!\cdots\!34}a-\frac{22\!\cdots\!77}{48\!\cdots\!22}$, $\frac{47\!\cdots\!39}{90\!\cdots\!36}a^{11}+\frac{29\!\cdots\!29}{90\!\cdots\!36}a^{10}-\frac{81\!\cdots\!23}{90\!\cdots\!36}a^{9}-\frac{63\!\cdots\!10}{24\!\cdots\!11}a^{8}+\frac{48\!\cdots\!06}{11\!\cdots\!17}a^{7}+\frac{18\!\cdots\!15}{22\!\cdots\!34}a^{6}-\frac{70\!\cdots\!23}{90\!\cdots\!36}a^{5}-\frac{11\!\cdots\!05}{90\!\cdots\!36}a^{4}+\frac{48\!\cdots\!19}{90\!\cdots\!36}a^{3}+\frac{85\!\cdots\!90}{11\!\cdots\!17}a^{2}-\frac{10\!\cdots\!21}{11\!\cdots\!17}a-\frac{28\!\cdots\!68}{24\!\cdots\!11}$, $\frac{56\!\cdots\!69}{18\!\cdots\!72}a^{11}-\frac{23\!\cdots\!39}{18\!\cdots\!72}a^{10}-\frac{52\!\cdots\!59}{18\!\cdots\!72}a^{9}+\frac{67\!\cdots\!87}{96\!\cdots\!44}a^{8}+\frac{45\!\cdots\!93}{45\!\cdots\!68}a^{7}-\frac{38\!\cdots\!29}{45\!\cdots\!68}a^{6}-\frac{27\!\cdots\!53}{18\!\cdots\!72}a^{5}-\frac{92\!\cdots\!37}{18\!\cdots\!72}a^{4}+\frac{17\!\cdots\!27}{18\!\cdots\!72}a^{3}+\frac{10\!\cdots\!93}{11\!\cdots\!17}a^{2}-\frac{35\!\cdots\!69}{22\!\cdots\!34}a-\frac{73\!\cdots\!91}{48\!\cdots\!22}$, $\frac{44\!\cdots\!19}{90\!\cdots\!36}a^{11}+\frac{24\!\cdots\!83}{90\!\cdots\!36}a^{10}-\frac{71\!\cdots\!41}{90\!\cdots\!36}a^{9}-\frac{10\!\cdots\!83}{48\!\cdots\!22}a^{8}+\frac{83\!\cdots\!49}{22\!\cdots\!34}a^{7}+\frac{16\!\cdots\!83}{22\!\cdots\!34}a^{6}-\frac{59\!\cdots\!63}{90\!\cdots\!36}a^{5}-\frac{98\!\cdots\!83}{90\!\cdots\!36}a^{4}+\frac{38\!\cdots\!01}{90\!\cdots\!36}a^{3}+\frac{71\!\cdots\!44}{11\!\cdots\!17}a^{2}-\frac{74\!\cdots\!24}{11\!\cdots\!17}a-\frac{18\!\cdots\!78}{24\!\cdots\!11}$, $\frac{34\!\cdots\!41}{90\!\cdots\!36}a^{11}+\frac{18\!\cdots\!25}{90\!\cdots\!36}a^{10}-\frac{55\!\cdots\!95}{90\!\cdots\!36}a^{9}-\frac{82\!\cdots\!43}{48\!\cdots\!22}a^{8}+\frac{63\!\cdots\!25}{22\!\cdots\!34}a^{7}+\frac{12\!\cdots\!53}{22\!\cdots\!34}a^{6}-\frac{45\!\cdots\!17}{90\!\cdots\!36}a^{5}-\frac{76\!\cdots\!73}{90\!\cdots\!36}a^{4}+\frac{28\!\cdots\!63}{90\!\cdots\!36}a^{3}+\frac{53\!\cdots\!64}{11\!\cdots\!17}a^{2}-\frac{55\!\cdots\!16}{11\!\cdots\!17}a-\frac{11\!\cdots\!76}{24\!\cdots\!11}$, $\frac{38\!\cdots\!95}{90\!\cdots\!36}a^{11}-\frac{15\!\cdots\!83}{90\!\cdots\!36}a^{10}-\frac{36\!\cdots\!73}{90\!\cdots\!36}a^{9}+\frac{23\!\cdots\!88}{24\!\cdots\!11}a^{8}+\frac{15\!\cdots\!40}{11\!\cdots\!17}a^{7}-\frac{32\!\cdots\!79}{22\!\cdots\!34}a^{6}-\frac{19\!\cdots\!35}{90\!\cdots\!36}a^{5}-\frac{91\!\cdots\!53}{90\!\cdots\!36}a^{4}+\frac{11\!\cdots\!81}{90\!\cdots\!36}a^{3}+\frac{95\!\cdots\!62}{11\!\cdots\!17}a^{2}-\frac{43\!\cdots\!61}{22\!\cdots\!34}a-\frac{33\!\cdots\!63}{24\!\cdots\!11}$, $\frac{67\!\cdots\!67}{18\!\cdots\!72}a^{11}-\frac{18\!\cdots\!69}{18\!\cdots\!72}a^{10}-\frac{70\!\cdots\!41}{18\!\cdots\!72}a^{9}+\frac{51\!\cdots\!39}{96\!\cdots\!44}a^{8}+\frac{65\!\cdots\!85}{45\!\cdots\!68}a^{7}-\frac{18\!\cdots\!21}{45\!\cdots\!68}a^{6}-\frac{42\!\cdots\!43}{18\!\cdots\!72}a^{5}-\frac{20\!\cdots\!03}{18\!\cdots\!72}a^{4}+\frac{26\!\cdots\!21}{18\!\cdots\!72}a^{3}+\frac{29\!\cdots\!05}{22\!\cdots\!34}a^{2}-\frac{52\!\cdots\!53}{22\!\cdots\!34}a-\frac{91\!\cdots\!51}{48\!\cdots\!22}$, $\frac{24\!\cdots\!41}{18\!\cdots\!72}a^{11}-\frac{11\!\cdots\!55}{18\!\cdots\!72}a^{10}-\frac{21\!\cdots\!55}{18\!\cdots\!72}a^{9}+\frac{38\!\cdots\!21}{96\!\cdots\!44}a^{8}+\frac{16\!\cdots\!19}{45\!\cdots\!68}a^{7}-\frac{31\!\cdots\!55}{45\!\cdots\!68}a^{6}-\frac{94\!\cdots\!77}{18\!\cdots\!72}a^{5}+\frac{59\!\cdots\!03}{18\!\cdots\!72}a^{4}+\frac{51\!\cdots\!63}{18\!\cdots\!72}a^{3}+\frac{49\!\cdots\!37}{22\!\cdots\!34}a^{2}-\frac{12\!\cdots\!09}{22\!\cdots\!34}a-\frac{15\!\cdots\!77}{48\!\cdots\!22}$, $\frac{52\!\cdots\!83}{90\!\cdots\!36}a^{11}-\frac{10\!\cdots\!35}{45\!\cdots\!68}a^{10}-\frac{12\!\cdots\!47}{22\!\cdots\!34}a^{9}+\frac{24\!\cdots\!71}{19\!\cdots\!88}a^{8}+\frac{86\!\cdots\!69}{45\!\cdots\!68}a^{7}-\frac{40\!\cdots\!45}{22\!\cdots\!34}a^{6}-\frac{26\!\cdots\!71}{90\!\cdots\!36}a^{5}-\frac{21\!\cdots\!17}{45\!\cdots\!68}a^{4}+\frac{38\!\cdots\!45}{22\!\cdots\!34}a^{3}+\frac{12\!\cdots\!27}{90\!\cdots\!36}a^{2}-\frac{10\!\cdots\!13}{45\!\cdots\!68}a-\frac{10\!\cdots\!39}{48\!\cdots\!22}$, $\frac{17\!\cdots\!81}{90\!\cdots\!36}a^{11}-\frac{72\!\cdots\!37}{90\!\cdots\!36}a^{10}-\frac{16\!\cdots\!79}{90\!\cdots\!36}a^{9}+\frac{45\!\cdots\!85}{96\!\cdots\!44}a^{8}+\frac{14\!\cdots\!13}{22\!\cdots\!34}a^{7}-\frac{79\!\cdots\!50}{11\!\cdots\!17}a^{6}-\frac{91\!\cdots\!65}{90\!\cdots\!36}a^{5}-\frac{19\!\cdots\!83}{90\!\cdots\!36}a^{4}+\frac{55\!\cdots\!91}{90\!\cdots\!36}a^{3}+\frac{17\!\cdots\!53}{45\!\cdots\!68}a^{2}-\frac{10\!\cdots\!87}{11\!\cdots\!17}a-\frac{15\!\cdots\!00}{24\!\cdots\!11}$, $\frac{63\!\cdots\!43}{90\!\cdots\!36}a^{11}-\frac{19\!\cdots\!51}{45\!\cdots\!68}a^{10}-\frac{63\!\cdots\!34}{11\!\cdots\!17}a^{9}+\frac{52\!\cdots\!55}{19\!\cdots\!88}a^{8}+\frac{74\!\cdots\!39}{45\!\cdots\!68}a^{7}-\frac{11\!\cdots\!53}{22\!\cdots\!34}a^{6}-\frac{19\!\cdots\!87}{90\!\cdots\!36}a^{5}+\frac{14\!\cdots\!69}{45\!\cdots\!68}a^{4}+\frac{13\!\cdots\!35}{11\!\cdots\!17}a^{3}-\frac{82\!\cdots\!41}{90\!\cdots\!36}a^{2}-\frac{69\!\cdots\!37}{45\!\cdots\!68}a-\frac{35\!\cdots\!75}{48\!\cdots\!22}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 888313809.963 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 888313809.963 \cdot 3}{2\cdot\sqrt{29428267022381449968353937}}\cr\approx \mathstrut & 1.00608639643 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.3969.1, 4.4.4913.1, 6.6.77394297393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/5.12.0.1}{12} }$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.1.0.1}{1} }^{12}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.12.16.40 | $x^{12} + 24 x^{11} + 216 x^{10} + 840 x^{9} + 864 x^{8} - 2592 x^{7} - 4482 x^{6} + 8424 x^{5} + 25272 x^{4} + 4968 x^{3} + 29808 x^{2} + 139077$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
\(7\) | 7.12.8.3 | $x^{12} + 245 x^{6} - 1372 x^{3} + 7203$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |