Normalized defining polynomial
\( x^{12} - 273 x^{10} - 910 x^{9} + 22932 x^{8} + 133770 x^{7} - 551642 x^{6} - 5457816 x^{5} + \cdots - 97103643 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[12, 0]$ |
| |
| Discriminant: |
\(4002614648521196621698550493\)
\(\medspace = 3^{18}\cdot 7^{8}\cdot 13^{11}\)
|
| |
| Root discriminant: | \(199.62\) |
| |
| Galois root discriminant: | $3^{3/2}7^{2/3}13^{11/12}\approx 199.61598450849033$ | ||
| Ramified primes: |
\(3\), \(7\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{12}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(819=3^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{819}(256,·)$, $\chi_{819}(1,·)$, $\chi_{819}(2,·)$, $\chi_{819}(4,·)$, $\chi_{819}(32,·)$, $\chi_{819}(8,·)$, $\chi_{819}(64,·)$, $\chi_{819}(128,·)$, $\chi_{819}(205,·)$, $\chi_{819}(16,·)$, $\chi_{819}(512,·)$, $\chi_{819}(410,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{7}a^{3}$, $\frac{1}{7}a^{4}$, $\frac{1}{7}a^{5}$, $\frac{1}{49}a^{6}$, $\frac{1}{49}a^{7}$, $\frac{1}{49}a^{8}$, $\frac{1}{5831}a^{9}-\frac{3}{833}a^{7}+\frac{3}{119}a^{5}-\frac{6}{119}a^{4}+\frac{4}{119}a^{3}+\frac{4}{17}a^{2}-\frac{8}{17}a$, $\frac{1}{29155}a^{10}-\frac{1}{29155}a^{9}+\frac{31}{4165}a^{8}+\frac{37}{4165}a^{7}+\frac{38}{4165}a^{6}+\frac{5}{119}a^{5}-\frac{1}{85}a^{4}-\frac{27}{595}a^{3}+\frac{39}{85}a^{2}-\frac{26}{85}a+\frac{2}{5}$, $\frac{1}{56\cdots 15}a^{11}-\frac{1244157259741}{56\cdots 15}a^{10}+\frac{39457877532977}{56\cdots 15}a^{9}+\frac{240515590117857}{81\cdots 45}a^{8}+\frac{88758580462739}{11\cdots 35}a^{7}-\frac{115721835010506}{16\cdots 69}a^{6}-\frac{5407994235176}{680920056158755}a^{5}+\frac{19449005488659}{680920056158755}a^{4}+\frac{53476767108868}{11\cdots 35}a^{3}-\frac{481594030127251}{16\cdots 05}a^{2}-\frac{431543596847896}{16\cdots 05}a-\frac{22198159315}{318932110613}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}\times C_{3}$, which has order $9$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}\times C_{6}$, which has order $36$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{355895910}{54460528735501}a^{11}-\frac{2038491864}{54460528735501}a^{10}-\frac{85612736764}{54460528735501}a^{9}+\frac{23941542465}{7780075533643}a^{8}+\frac{1032575417802}{7780075533643}a^{7}+\frac{868566082998}{7780075533643}a^{6}-\frac{279774190215}{65378785997}a^{5}-\frac{725327993871}{65378785997}a^{4}+\frac{46182872472711}{1111439361949}a^{3}+\frac{28907703541197}{158777051707}a^{2}+\frac{20645651693277}{158777051707}a-\frac{16377645655}{153111911}$, $\frac{1986474849759}{56\cdots 15}a^{11}-\frac{10182990801948}{56\cdots 15}a^{10}-\frac{488492710398113}{56\cdots 15}a^{9}+\frac{97459884822429}{81\cdots 45}a^{8}+\frac{59\cdots 24}{81\cdots 45}a^{7}+\frac{76\cdots 98}{81\cdots 45}a^{6}-\frac{16\cdots 24}{680920056158755}a^{5}-\frac{956706554525478}{136184011231751}a^{4}+\frac{52\cdots 28}{23\cdots 67}a^{3}+\frac{36\cdots 09}{330732598705681}a^{2}+\frac{26\cdots 22}{330732598705681}a-\frac{103629609277163}{1594660553065}$, $\frac{2275278297561}{56\cdots 15}a^{11}-\frac{12674936935848}{56\cdots 15}a^{10}-\frac{78847345934103}{81\cdots 45}a^{9}+\frac{29096241855579}{16\cdots 69}a^{8}+\frac{66\cdots 34}{81\cdots 45}a^{7}+\frac{59\cdots 99}{81\cdots 45}a^{6}-\frac{18\cdots 71}{680920056158755}a^{5}-\frac{47\cdots 19}{680920056158755}a^{4}+\frac{29\cdots 07}{11\cdots 35}a^{3}+\frac{18\cdots 01}{16\cdots 05}a^{2}+\frac{12\cdots 56}{16\cdots 05}a-\frac{107201394206239}{1594660553065}$, $\frac{165254804109}{11\cdots 35}a^{11}-\frac{4761802361153}{11\cdots 83}a^{10}-\frac{21\cdots 94}{56\cdots 15}a^{9}-\frac{131200270524622}{81\cdots 45}a^{8}+\frac{54\cdots 54}{16\cdots 69}a^{7}+\frac{72\cdots 33}{81\cdots 45}a^{6}-\frac{73\cdots 01}{680920056158755}a^{5}-\frac{30\cdots 82}{680920056158755}a^{4}+\frac{10\cdots 26}{11\cdots 35}a^{3}+\frac{10\cdots 63}{16\cdots 05}a^{2}+\frac{99\cdots 03}{16\cdots 05}a-\frac{748155654985838}{1594660553065}$, $\frac{1108756660203}{18\cdots 03}a^{11}-\frac{6094780554158}{18\cdots 03}a^{10}-\frac{269041478214085}{18\cdots 03}a^{9}+\frac{66950055313931}{265670448140629}a^{8}+\frac{465679367076162}{37952921162947}a^{7}+\frac{32\cdots 18}{265670448140629}a^{6}-\frac{883355893582476}{2232524774291}a^{5}-\frac{24\cdots 63}{2232524774291}a^{4}+\frac{14\cdots 76}{37952921162947}a^{3}+\frac{94\cdots 70}{5421845880421}a^{2}+\frac{68\cdots 13}{5421845880421}a-\frac{33\cdots 92}{318932110613}$, $\frac{45644742041389}{11\cdots 83}a^{11}-\frac{36038981127222}{16\cdots 69}a^{10}-\frac{11\cdots 16}{11\cdots 83}a^{9}+\frac{27\cdots 52}{16\cdots 69}a^{8}+\frac{13\cdots 98}{16\cdots 69}a^{7}+\frac{13\cdots 62}{16\cdots 69}a^{6}-\frac{36\cdots 50}{136184011231751}a^{5}-\frac{98\cdots 31}{136184011231751}a^{4}+\frac{59\cdots 40}{23\cdots 67}a^{3}+\frac{38\cdots 07}{330732598705681}a^{2}+\frac{27\cdots 86}{330732598705681}a-\frac{22\cdots 22}{318932110613}$, $\frac{1739065697231}{16\cdots 69}a^{11}-\frac{40625790965124}{81\cdots 45}a^{10}-\frac{15\cdots 12}{56\cdots 15}a^{9}+\frac{22\cdots 37}{81\cdots 45}a^{8}+\frac{18\cdots 74}{81\cdots 45}a^{7}+\frac{28\cdots 46}{81\cdots 45}a^{6}-\frac{10\cdots 58}{136184011231751}a^{5}-\frac{22\cdots 56}{97274293736965}a^{4}+\frac{80\cdots 86}{11\cdots 35}a^{3}+\frac{58\cdots 88}{16\cdots 05}a^{2}+\frac{45\cdots 58}{16\cdots 05}a-\frac{35\cdots 96}{1594660553065}$, $\frac{508745186373327}{56\cdots 15}a^{11}-\frac{23\cdots 11}{56\cdots 15}a^{10}-\frac{12\cdots 62}{56\cdots 15}a^{9}+\frac{37\cdots 07}{16\cdots 69}a^{8}+\frac{15\cdots 13}{81\cdots 45}a^{7}+\frac{23\cdots 98}{81\cdots 45}a^{6}-\frac{43\cdots 07}{680920056158755}a^{5}-\frac{13\cdots 58}{680920056158755}a^{4}+\frac{69\cdots 04}{11\cdots 35}a^{3}+\frac{49\cdots 77}{16\cdots 05}a^{2}+\frac{37\cdots 92}{16\cdots 05}a-\frac{29\cdots 73}{1594660553065}$, $\frac{1175303250193}{11\cdots 83}a^{11}-\frac{5684207260406}{81\cdots 45}a^{10}-\frac{13\cdots 23}{56\cdots 15}a^{9}+\frac{544134685297898}{81\cdots 45}a^{8}+\frac{15\cdots 16}{81\cdots 45}a^{7}+\frac{46\cdots 84}{81\cdots 45}a^{6}-\frac{119707277296113}{19454858747393}a^{5}-\frac{13\cdots 94}{97274293736965}a^{4}+\frac{69\cdots 04}{11\cdots 35}a^{3}+\frac{41\cdots 77}{16\cdots 05}a^{2}+\frac{29\cdots 47}{16\cdots 05}a-\frac{241646190912079}{1594660553065}$, $\frac{44112320888357}{56\cdots 15}a^{11}-\frac{56752542872584}{56\cdots 15}a^{10}-\frac{12\cdots 39}{56\cdots 15}a^{9}-\frac{31\cdots 03}{81\cdots 45}a^{8}+\frac{22\cdots 01}{11\cdots 35}a^{7}+\frac{60\cdots 84}{81\cdots 45}a^{6}-\frac{41\cdots 57}{680920056158755}a^{5}-\frac{45\cdots 45}{136184011231751}a^{4}+\frac{10\cdots 11}{23\cdots 67}a^{3}+\frac{14\cdots 67}{330732598705681}a^{2}+\frac{15\cdots 80}{330732598705681}a-\frac{53\cdots 04}{1594660553065}$, $\frac{10470237926839}{11\cdots 83}a^{11}-\frac{26702958028139}{11\cdots 83}a^{10}-\frac{27\cdots 61}{11\cdots 83}a^{9}-\frac{48319605566174}{23\cdots 67}a^{8}+\frac{35\cdots 63}{16\cdots 69}a^{7}+\frac{10\cdots 47}{16\cdots 69}a^{6}-\frac{93\cdots 28}{136184011231751}a^{5}-\frac{44\cdots 44}{136184011231751}a^{4}+\frac{12\cdots 66}{23\cdots 67}a^{3}+\frac{15\cdots 05}{330732598705681}a^{2}+\frac{15\cdots 09}{330732598705681}a-\frac{10\cdots 97}{318932110613}$
|
| |
| Regulator: | \( 2322316634.755115 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 2322316634.755115 \cdot 9}{2\cdot\sqrt{4002614648521196621698550493}}\cr\approx \mathstrut & 0.676584438194669 \end{aligned}\] (assuming GRH)
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.670761.3, 4.4.19773.1, 6.6.5848964148573.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | R | ${\href{/padicField/17.1.0.1}{1} }^{12}$ | ${\href{/padicField/19.12.0.1}{12} }$ | ${\href{/padicField/23.3.0.1}{3} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.6.9a1.3 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $$[2]_{2}$$ |
| 3.1.6.9a1.3 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $$[2]_{2}$$ | |
|
\(7\)
| 7.4.3.8a1.2 | $x^{12} + 15 x^{10} + 12 x^{9} + 84 x^{8} + 120 x^{7} + 263 x^{6} + 372 x^{5} + 492 x^{4} + 424 x^{3} + 279 x^{2} + 115 x + 27$ | $3$ | $4$ | $8$ | $C_{12}$ | $$[\ ]_{3}^{4}$$ |
|
\(13\)
| 13.1.12.11a1.3 | $x^{12} + 39$ | $12$ | $1$ | $11$ | $C_{12}$ | $$[\ ]_{12}$$ |