Properties

Label 67.1.16.15a1.2
Base \(\Q_{67}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(15\)
Galois group $C_{16}:C_4$ (as 16T136)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 134\) Copy content Toggle raw display

Invariants

Base field: $\Q_{67}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{67}(\sqrt{67\cdot 2})$
Root number: $i$
$\Aut(K/\Q_{67})$: $C_2$
This field is not Galois over $\Q_{67}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$66 = (67 - 1)$

Intermediate fields

$\Q_{67}(\sqrt{67})$, 67.1.4.3a1.2, 67.1.8.7a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{67}$
Relative Eisenstein polynomial: \( x^{16} + 134 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{15} + 16 z^{14} + 53 z^{13} + 24 z^{12} + 11 z^{11} + 13 z^{10} + 35 z^9 + 50 z^8 + 6 z^7 + 50 z^6 + 35 z^5 + 13 z^4 + 11 z^3 + 24 z^2 + 53 z + 16$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $64$
Galois group: $C_{16}:C_4$ (as 16T136)
Inertia group: $C_{16}$ (as 16T1)
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $16$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9375$
Galois splitting model:not computed