Show commands: Magma
Group invariants
Abstract group: | $C_{16}:C_4$ |
| |
Order: | $64=2^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $136$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,5)(2,6)(3,4)(9,16,10,15)(11,14,12,13)$, $(1,15,5,12,2,16,6,11)(3,13,8,9,4,14,7,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$, $C_4\times C_2$, $Q_8$ $16$: $QD_{16}$ x 2, $C_4:C_4$ $32$: 32T47 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $QD_{16}$
Low degree siblings
32T149Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,16,12,15)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,13,10,14)(11,16,12,15)$ |
4C1 | $4^{2},2^{3},1^{2}$ | $8$ | $4$ | $9$ | $( 3, 8)( 4, 7)( 5, 6)( 9,11,10,12)(13,15,14,16)$ |
4C-1 | $4^{2},2^{3},1^{2}$ | $8$ | $4$ | $9$ | $( 3, 8)( 4, 7)( 5, 6)( 9,12,10,11)(13,16,14,15)$ |
8A1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,11,13,16,10,12,14,15)$ |
8A-1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 7, 6, 4, 2, 8, 5, 3)( 9,15,14,12,10,16,13,11)$ |
8B | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,12,13,15,10,11,14,16)$ |
8C1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,13, 6,10, 2,14, 5, 9)( 3,12, 7,15, 4,11, 8,16)$ |
8C-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,13, 5, 9, 2,14, 6,10)( 3,12, 8,16, 4,11, 7,15)$ |
16A1 | $16$ | $4$ | $16$ | $15$ | $( 1,13, 3,16, 5,10, 8,12, 2,14, 4,15, 6, 9, 7,11)$ |
16A-1 | $16$ | $4$ | $16$ | $15$ | $( 1,10, 4,11, 5,14, 7,16, 2, 9, 3,12, 6,13, 8,15)$ |
16B1 | $16$ | $4$ | $16$ | $15$ | $( 1,13, 4,15, 5,10, 7,11, 2,14, 3,16, 6, 9, 8,12)$ |
16B-1 | $16$ | $4$ | $16$ | $15$ | $( 1,10, 3,12, 5,14, 8,15, 2, 9, 4,11, 6,13, 7,16)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 4A | 4B | 4C1 | 4C-1 | 8A1 | 8A-1 | 8B | 8C1 | 8C-1 | 16A1 | 16A-1 | 16B1 | 16B-1 | ||
Size | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 2A | 2A | 2B | 2B | 4A | 4A | 4A | 4B | 4B | 8A1 | 8A-1 | 8A-1 | 8A1 | |
Type | |||||||||||||||||
64.46.1a | R | ||||||||||||||||
64.46.1b | R | ||||||||||||||||
64.46.1c | R | ||||||||||||||||
64.46.1d | R | ||||||||||||||||
64.46.1e1 | C | ||||||||||||||||
64.46.1e2 | C | ||||||||||||||||
64.46.1f1 | C | ||||||||||||||||
64.46.1f2 | C | ||||||||||||||||
64.46.2a | R | ||||||||||||||||
64.46.2b | S | ||||||||||||||||
64.46.2c1 | C | ||||||||||||||||
64.46.2c2 | C | ||||||||||||||||
64.46.2d1 | C | ||||||||||||||||
64.46.2d2 | C | ||||||||||||||||
64.46.4a1 | C | ||||||||||||||||
64.46.4a2 | C |
Regular extensions
Data not computed