Defining polynomial
$x^{16} + 67d_{0}$ |
Invariants
Residue field characteristic: | $67$ |
Degree: | $16$ |
Base field: | $\Q_{67}$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $15$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $2$ |
Mass: | $1$ |
Absolute Mass: | $1$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[4]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
67.1.16.15a1.1 | $x^{16} + 67$ | $C_{16}:C_4$ (as 16T136) | $64$ | $2$ | $[\ ]^{4}$ | $[0]$ | $[4]$ | undefined |
67.1.16.15a1.2 | $x^{16} + 134$ | $C_{16}:C_4$ (as 16T136) | $64$ | $2$ | $[\ ]^{4}$ | $[0]$ | $[4]$ | undefined |