Properties

Label 53.4.3.8a1.2
Base \(\Q_{53}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + 9 x^{2} + 38 x + 2 )^{3} + 53$ Copy content Toggle raw display

Invariants

Base field: $\Q_{53}$
Degree $d$: $12$
Ramification index $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{53}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{53})$ $=$$\Gal(K/\Q_{53})$: $C_3:C_4$
This field is Galois over $\Q_{53}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$7890480 = (53^{ 4 } - 1)$

Intermediate fields

$\Q_{53}(\sqrt{2})$, 53.1.3.2a1.1 x3, 53.4.1.0a1.1, 53.2.3.4a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:53.4.1.0a1.1 $\cong \Q_{53}(t)$ where $t$ is a root of \( x^{4} + 9 x^{2} + 38 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 53 \) $\ \in\Q_{53}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 3 z + 3$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $C_3:C_4$ (as 12T5)
Inertia group: Intransitive group isomorphic to $C_3$
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $3$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.6666666666666666$
Galois splitting model:not computed