Defining polynomial
|
$( x^{4} + 9 x^{2} + 38 x + 2 )^{3} + 53$
|
Invariants
| Base field: | $\Q_{53}$ |
| Degree $d$: | $12$ |
| Ramification index $e$: | $3$ |
| Residue field degree $f$: | $4$ |
| Discriminant exponent $c$: | $8$ |
| Discriminant root field: | $\Q_{53}(\sqrt{2})$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{53})$ $=$$\Gal(K/\Q_{53})$: | $C_3:C_4$ |
| This field is Galois over $\Q_{53}.$ | |
| Visible Artin slopes: | $[\ ]$ |
| Visible Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Jump set: | undefined |
| Roots of unity: | $7890480 = (53^{ 4 } - 1)$ |
Intermediate fields
| $\Q_{53}(\sqrt{2})$, 53.1.3.2a1.1 x3, 53.4.1.0a1.1, 53.2.3.4a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 53.4.1.0a1.1 $\cong \Q_{53}(t)$ where $t$ is a root of
\( x^{4} + 9 x^{2} + 38 x + 2 \)
|
| Relative Eisenstein polynomial: |
\( x^{3} + 53 \)
$\ \in\Q_{53}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z^2 + 3 z + 3$ |
| Associated inertia: | $1$ |
| Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
| Galois degree: | $12$ |
| Galois group: | $C_3:C_4$ (as 12T5) |
| Inertia group: | Intransitive group isomorphic to $C_3$ |
| Wild inertia group: | $C_1$ |
| Galois unramified degree: | $4$ |
| Galois tame degree: | $3$ |
| Galois Artin slopes: | $[\ ]$ |
| Galois Swan slopes: | $[\ ]$ |
| Galois mean slope: | $0.6666666666666666$ |
| Galois splitting model: | not computed |