Defining polynomial
\(x^{4} + 9 x^{2} + 38 x + 2\)
|
Invariants
Base field: | $\Q_{53}$ |
Degree $d$: | $4$ |
Ramification index $e$: | $1$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $0$ |
Discriminant root field: | $\Q_{53}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{53})$ $=$$\Gal(K/\Q_{53})$: | $C_4$ |
This field is Galois and abelian over $\Q_{53}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $7890480 = (53^{ 4 } - 1)$ |
Intermediate fields
$\Q_{53}(\sqrt{2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 53.4.1.0a1.1 $\cong \Q_{53}(t)$ where $t$ is a root of
\( x^{4} + 9 x^{2} + 38 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x - 53 \)
$\ \in\Q_{53}(t)[x]$
|
Ramification polygon
The ramification polygon is trivial for unramified extensions.
Invariants of the Galois closure
Galois degree: | $4$ |
Galois group: | $C_4$ (as 4T1) |
Inertia group: | trivial |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.0$ |
Galois splitting model: | $x^{4} - x^{3} - 15 x^{2} - 18 x - 4$ |