Properties

Label 53.4.1.0a1.1
Base \(\Q_{53}\)
Degree \(4\)
e \(1\)
f \(4\)
c \(0\)
Galois group $C_4$ (as 4T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 9 x^{2} + 38 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{53}$
Degree $d$: $4$
Ramification index $e$: $1$
Residue field degree $f$: $4$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{53}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{53})$ $=$$\Gal(K/\Q_{53})$: $C_4$
This field is Galois and abelian over $\Q_{53}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$7890480 = (53^{ 4 } - 1)$

Intermediate fields

$\Q_{53}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:53.4.1.0a1.1 $\cong \Q_{53}(t)$ where $t$ is a root of \( x^{4} + 9 x^{2} + 38 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 53 \) $\ \in\Q_{53}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $4$
Galois group: $C_4$ (as 4T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{4} - x^{3} - 15 x^{2} - 18 x - 4$