Properties

Label 53.2.2.2a1.1
Base \(\Q_{53}\)
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)
Galois group $C_4$ (as 4T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 49 x + 2 )^{2} + 53 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{53}$
Degree $d$: $4$
Ramification index $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{53}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{53})$ $=$$\Gal(K/\Q_{53})$: $C_4$
This field is Galois and abelian over $\Q_{53}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$2808 = (53^{ 2 } - 1)$

Intermediate fields

$\Q_{53}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{53}(\sqrt{2})$ $\cong \Q_{53}(t)$ where $t$ is a root of \( x^{2} + 49 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 53 t \) $\ \in\Q_{53}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $4$
Galois group: $C_4$ (as 4T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $2$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.5$
Galois splitting model:$x^{4} - x^{3} + 66 x^{2} - 66 x + 911$