Properties

Label 5.1.13.12a1.1
Base \(\Q_{5}\)
Degree \(13\)
e \(13\)
f \(1\)
c \(12\)
Galois group $C_{13}:C_4$ (as 13T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{13} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $13$
Ramification index $e$: $13$
Residue field degree $f$: $1$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$4 = (5 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 5 }$.

Canonical tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{13} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + 3 z^{11} + 3 z^{10} + z^9 + 2 z^7 + z^6 + z^5 + 2 z^4 + z^2 + 3 z + 3$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $52$
Galois group: $C_{13}:C_4$ (as 13T4)
Inertia group: $C_{13}$ (as 13T1)
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $13$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9230769230769231$
Galois splitting model:not computed