Show commands: Magma
Group invariants
| Abstract group: | $C_{13}:C_4$ |
| |
| Order: | $52=2^{2} \cdot 13$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $13$ |
| |
| Transitive number $t$: | $4$ |
| |
| CHM label: | $F_{52}(13)=13:4$ | ||
| Parity: | $-1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,2,3,4,5,6,7,8,9,10,11,12,13)$, $(1,5,12,8)(2,10,11,3)(4,7,9,6)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
26T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{13}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6},1$ | $13$ | $2$ | $6$ | $( 1, 6)( 2, 5)( 3, 4)( 7,13)( 8,12)( 9,11)$ |
| 4A1 | $4^{3},1$ | $13$ | $4$ | $9$ | $( 1, 3, 6, 4)( 2,11, 5, 9)( 7,12,13, 8)$ |
| 4A-1 | $4^{3},1$ | $13$ | $4$ | $9$ | $( 1, 4, 6, 3)( 2, 9, 5,11)( 7, 8,13,12)$ |
| 13A1 | $13$ | $4$ | $13$ | $12$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
| 13A2 | $13$ | $4$ | $13$ | $12$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)$ |
| 13A4 | $13$ | $4$ | $13$ | $12$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)$ |
Malle's constant $a(G)$: $1/6$
Character table
| 1A | 2A | 4A1 | 4A-1 | 13A1 | 13A2 | 13A4 | ||
| Size | 1 | 13 | 13 | 13 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 2A | 2A | 13A2 | 13A4 | 13A1 | |
| 13 P | 1A | 2A | 4A-1 | 4A1 | 13A2 | 13A4 | 13A1 | |
| Type | ||||||||
| 52.3.1a | R | |||||||
| 52.3.1b | R | |||||||
| 52.3.1c1 | C | |||||||
| 52.3.1c2 | C | |||||||
| 52.3.4a1 | R | |||||||
| 52.3.4a2 | R | |||||||
| 52.3.4a3 | R |
Regular extensions
Data not computed