Properties

Label 13T4
13T4 1 2 1->2 5 1->5 3 2->3 10 2->10 3->2 4 3->4 4->5 7 4->7 6 5->6 12 5->12 6->4 6->7 8 7->8 9 7->9 8->1 8->9 9->6 9->10 11 10->11 10->11 11->3 11->12 12->8 13 12->13 13->1
Degree $13$
Order $52$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $C_{13}:C_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(13, 4);
 

Group invariants

Abstract group:  $C_{13}:C_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $52=2^{2} \cdot 13$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $13$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $4$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $F_{52}(13)=13:4$
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  yes
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,4,5,6,7,8,9,10,11,12,13)$, $(1,5,12,8)(2,10,11,3)(4,7,9,6)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

26T4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{13}$ $1$ $1$ $0$ $()$
2A $2^{6},1$ $13$ $2$ $6$ $( 1, 6)( 2, 5)( 3, 4)( 7,13)( 8,12)( 9,11)$
4A1 $4^{3},1$ $13$ $4$ $9$ $( 1, 3, 6, 4)( 2,11, 5, 9)( 7,12,13, 8)$
4A-1 $4^{3},1$ $13$ $4$ $9$ $( 1, 4, 6, 3)( 2, 9, 5,11)( 7, 8,13,12)$
13A1 $13$ $4$ $13$ $12$ $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$
13A2 $13$ $4$ $13$ $12$ $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)$
13A4 $13$ $4$ $13$ $12$ $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)$

Malle's constant $a(G)$:     $1/6$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 4A1 4A-1 13A1 13A2 13A4
Size 1 13 13 13 4 4 4
2 P 1A 1A 2A 2A 13A2 13A4 13A1
13 P 1A 2A 4A-1 4A1 13A2 13A4 13A1
Type
52.3.1a R 1 1 1 1 1 1 1
52.3.1b R 1 1 1 1 1 1 1
52.3.1c1 C 1 1 i i 1 1 1
52.3.1c2 C 1 1 i i 1 1 1
52.3.4a1 R 4 0 0 0 ζ136+ζ134+ζ134+ζ136 ζ135+ζ131+ζ13+ζ135 ζ133+ζ132+ζ132+ζ133
52.3.4a2 R 4 0 0 0 ζ135+ζ131+ζ13+ζ135 ζ133+ζ132+ζ132+ζ133 ζ136+ζ134+ζ134+ζ136
52.3.4a3 R 4 0 0 0 ζ133+ζ132+ζ132+ζ133 ζ136+ζ134+ζ134+ζ136 ζ135+ζ131+ζ13+ζ135

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed