Properties

Label 37.2.4.6a1.4
Base \(\Q_{37}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 33 x + 2 )^{4} + 148 x + 1295$ Copy content Toggle raw display

Invariants

Base field: $\Q_{37}$
Degree $d$: $8$
Ramification index $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{37}$
Root number: $-1$
$\Aut(K/\Q_{37})$ $=$$\Gal(K/\Q_{37})$: $C_2\times C_4$
This field is Galois and abelian over $\Q_{37}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$1368 = (37^{ 2 } - 1)$

Intermediate fields

$\Q_{37}(\sqrt{2})$, $\Q_{37}(\sqrt{37})$, $\Q_{37}(\sqrt{37\cdot 2})$, 37.2.2.2a1.2, 37.1.4.3a1.2, 37.1.4.3a1.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{37}(\sqrt{2})$ $\cong \Q_{37}(t)$ where $t$ is a root of \( x^{2} + 33 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 148 t + 1295 \) $\ \in\Q_{37}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 4 z^2 + 6 z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $8$
Galois group: $C_2\times C_4$ (as 8T2)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $4$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.75$
Galois splitting model:not computed