Defining polynomial
\(x^{15} + 6 x^{11} + 3 x^{10} + 3 x^{8} + 3\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $15$ |
Ramification index $e$: | $15$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $22$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_3$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{9}{5}]$ |
Visible Swan slopes: | $[\frac{4}{5}]$ |
Means: | $\langle\frac{8}{15}\rangle$ |
Rams: | $(4)$ |
Jump set: | undefined |
Roots of unity: | $2 = (3 - 1)$ |
Intermediate fields
3.1.5.4a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{15} + 6 x^{11} + 3 x^{10} + 3 x^{8} + 3 \)
|
Ramification polygon
Residual polynomials: | $z^{12} + 2 z^9 + z^6 + z^3 + 2$,$2 z^2 + 1$ |
Associated inertia: | $4$,$1$ |
Indices of inseparability: | $[8, 0]$ |
Invariants of the Galois closure
Galois degree: | $1620$ |
Galois group: | $C_3^4:F_5$ (as 15T41) |
Inertia group: | $C_3^4:C_5$ (as 15T26) |
Wild inertia group: | $C_3^4$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $5$ |
Galois Artin slopes: | $[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]$ |
Galois Swan slopes: | $[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]$ |
Galois mean slope: | $1.7876543209876545$ |
Galois splitting model: |
$x^{15} + 105 x^{11} - 1377 x^{10} + 1995 x^{9} - 735 x^{8} - 2205 x^{7} + 47985 x^{6} - 94788 x^{5} + 62685 x^{4} - 190365 x^{3} - 6615 x^{2} + 161910 x + 109920$
|