Properties

Label 3.1.15.22a1.16
Base \(\Q_{3}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(22\)
Galois group $C_3^4:F_5$ (as 15T41)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 6 x^{11} + 3 x^{10} + 3 x^{8} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification index $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_3$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{9}{5}]$
Visible Swan slopes:$[\frac{4}{5}]$
Means:$\langle\frac{8}{15}\rangle$
Rams:$(4)$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

3.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{15} + 6 x^{11} + 3 x^{10} + 3 x^{8} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + 2 z^9 + z^6 + z^3 + 2$,$2 z^2 + 1$
Associated inertia:$4$,$1$
Indices of inseparability:$[8, 0]$

Invariants of the Galois closure

Galois degree: $1620$
Galois group: $C_3^4:F_5$ (as 15T41)
Inertia group: $C_3^4:C_5$ (as 15T26)
Wild inertia group: $C_3^4$
Galois unramified degree: $4$
Galois tame degree: $5$
Galois Artin slopes: $[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]$
Galois Swan slopes: $[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]$
Galois mean slope: $1.7876543209876545$
Galois splitting model: $x^{15} + 105 x^{11} - 1377 x^{10} + 1995 x^{9} - 735 x^{8} - 2205 x^{7} + 47985 x^{6} - 94788 x^{5} + 62685 x^{4} - 190365 x^{3} - 6615 x^{2} + 161910 x + 109920$ Copy content Toggle raw display