Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
3.1.15.22a1.1 |
9 |
$x^{15} + 3 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T41) |
$1620$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.2 |
18 |
$x^{15} + 3 x^{12} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.3 |
18 |
$x^{15} + 6 x^{12} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.4 |
9 |
$x^{15} + 3 x^{11} + 3 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T41) |
$1620$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.5 |
18 |
$x^{15} + 3 x^{12} + 3 x^{11} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.6 |
18 |
$x^{15} + 6 x^{12} + 3 x^{11} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.7 |
9 |
$x^{15} + 6 x^{11} + 3 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T41) |
$1620$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.8 |
18 |
$x^{15} + 3 x^{12} + 6 x^{11} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.9 |
18 |
$x^{15} + 6 x^{12} + 6 x^{11} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.10 |
9 |
$x^{15} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T41) |
$1620$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.11 |
18 |
$x^{15} + 3 x^{12} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.12 |
18 |
$x^{15} + 6 x^{12} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.13 |
9 |
$x^{15} + 3 x^{11} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T41) |
$1620$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.14 |
18 |
$x^{15} + 3 x^{12} + 3 x^{11} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.15 |
18 |
$x^{15} + 6 x^{12} + 3 x^{11} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.16 |
9 |
$x^{15} + 6 x^{11} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T41) |
$1620$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.17 |
18 |
$x^{15} + 3 x^{12} + 6 x^{11} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.18 |
18 |
$x^{15} + 6 x^{12} + 6 x^{11} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.19 |
9 |
$x^{15} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T41) |
$1620$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.20 |
18 |
$x^{15} + 3 x^{12} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.21 |
18 |
$x^{15} + 6 x^{12} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.22 |
9 |
$x^{15} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T41) |
$1620$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.23 |
18 |
$x^{15} + 3 x^{12} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.24 |
18 |
$x^{15} + 6 x^{12} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.25 |
9 |
$x^{15} + 6 x^{11} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T41) |
$1620$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.26 |
18 |
$x^{15} + 3 x^{12} + 6 x^{11} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a1.27 |
18 |
$x^{15} + 6 x^{12} + 6 x^{11} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3\wr F_5$ (as 15T56) |
$4860$ |
$3$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{12}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{12}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{12}$ |
$[8, 0]$ |
$[4, 1]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.15.22a2.1 |
9 |
$x^{15} + 6 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T42) |
$1620$ |
$1$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 2]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 2$ |
undefined |
3.1.15.22a2.2 |
9 |
$x^{15} + 3 x^{11} + 6 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T42) |
$1620$ |
$1$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 2]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 2$ |
undefined |
3.1.15.22a2.3 |
9 |
$x^{15} + 6 x^{11} + 6 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T42) |
$1620$ |
$1$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 2]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 2$ |
undefined |
3.1.15.22a2.4 |
9 |
$x^{15} + 3 x^{10} + 6 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T42) |
$1620$ |
$1$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 2]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 2$ |
undefined |
3.1.15.22a2.5 |
9 |
$x^{15} + 3 x^{11} + 3 x^{10} + 6 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T42) |
$1620$ |
$1$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 2]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 2$ |
undefined |
3.1.15.22a2.6 |
9 |
$x^{15} + 6 x^{11} + 3 x^{10} + 6 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T42) |
$1620$ |
$1$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 2]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 2$ |
undefined |
3.1.15.22a2.7 |
9 |
$x^{15} + 6 x^{10} + 6 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T42) |
$1620$ |
$1$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 2]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 2$ |
undefined |
3.1.15.22a2.8 |
9 |
$x^{15} + 3 x^{11} + 6 x^{10} + 6 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T42) |
$1620$ |
$1$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 2]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 2$ |
undefined |
3.1.15.22a2.9 |
9 |
$x^{15} + 6 x^{11} + 6 x^{10} + 6 x^{8} + 3$ |
$C_3^4:F_5$ (as 15T42) |
$1620$ |
$1$ |
$[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]_{5}^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]_{5}^{4}$ |
$[\frac{9}{5},\frac{9}{5},\frac{9}{5}]^{4}$ |
$[\frac{4}{5},\frac{4}{5},\frac{4}{5}]^{4}$ |
$[8, 0]$ |
$[4, 2]$ |
$z^{12} + 2 z^9 + z^6 + z^3 + 2,2 z^2 + 2$ |
undefined |