Defining polynomial
|
\(x^{15} + 6 x^{8} + 3\)
|
Invariants
| Base field: | $\Q_{3}$ |
| Degree $d$: | $15$ |
| Ramification index $e$: | $15$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $22$ |
| Discriminant root field: | $\Q_{3}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{3})$: | $C_1$ |
| This field is not Galois over $\Q_{3}.$ | |
| Visible Artin slopes: | $[\frac{9}{5}]$ |
| Visible Swan slopes: | $[\frac{4}{5}]$ |
| Means: | $\langle\frac{8}{15}\rangle$ |
| Rams: | $(4)$ |
| Jump set: | undefined |
| Roots of unity: | $2 = (3 - 1)$ |
Intermediate fields
| 3.1.5.4a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{3}$ |
| Relative Eisenstein polynomial: |
\( x^{15} + 6 x^{8} + 3 \)
|
Ramification polygon
| Residual polynomials: | $z^{12} + 2 z^9 + z^6 + z^3 + 2$,$2 z^2 + 2$ |
| Associated inertia: | $4$,$2$ |
| Indices of inseparability: | $[8, 0]$ |
Invariants of the Galois closure
| Galois degree: | $1620$ |
| Galois group: | $C_3^4:F_5$ (as 15T42) |
| Inertia group: | $C_3^4:C_5$ (as 15T26) |
| Wild inertia group: | $C_3^4$ |
| Galois unramified degree: | $4$ |
| Galois tame degree: | $5$ |
| Galois Artin slopes: | $[\frac{9}{5}, \frac{9}{5}, \frac{9}{5}, \frac{9}{5}]$ |
| Galois Swan slopes: | $[\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}]$ |
| Galois mean slope: | $1.7876543209876545$ |
| Galois splitting model: |
$x^{15} - 20 x^{12} + 327 x^{10} + 130 x^{9} - 120 x^{8} - 300 x^{7} - 3880 x^{6} - 4827 x^{5} - 1830 x^{4} - 880 x^{3} - 480 x^{2} + 30 x - 1$
|