Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $41$ | |
| CHM label : | $[3^{4}]F(5)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,11)(4,14,9), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (1,7,4,13)(2,14,8,11)(3,6,12,9) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 20: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $F_5$
Low degree siblings
15T42, 30T295, 30T296, 30T298, 30T299, 30T302, 45T204, 45T210Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1, 6,11)( 4,14, 9)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $20$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3,13, 8)( 4,14, 9)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 3,13, 8)( 4,14, 9)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 2, 7,12)( 3, 8,13)( 4, 9,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 2, 7,12)( 3, 8,13)( 4,14, 9)$ |
| $ 3, 3, 3, 3, 3 $ | $5$ | $3$ | $( 1,11, 6)( 2, 7,12)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $5$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,15,10)$ |
| $ 5, 5, 5 $ | $324$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $45$ | $2$ | $( 2, 5)( 3, 9)( 4,13)( 7,10)( 8,14)(12,15)$ |
| $ 6, 3, 2, 2, 2 $ | $90$ | $6$ | $( 1, 6,11)( 2, 5)( 3, 4,13,14, 8, 9)( 7,10)(12,15)$ |
| $ 6, 3, 2, 2, 2 $ | $90$ | $6$ | $( 1,11, 6)( 2, 5)( 3,14, 8, 4,13, 9)( 7,10)(12,15)$ |
| $ 6, 6, 1, 1, 1 $ | $90$ | $6$ | $( 2, 5, 7,10,12,15)( 3, 9,13, 4, 8,14)$ |
| $ 6, 6, 3 $ | $45$ | $6$ | $( 1, 6,11)( 2, 5, 7,10,12,15)( 3, 4, 8, 9,13,14)$ |
| $ 6, 6, 3 $ | $45$ | $6$ | $( 1,11, 6)( 2, 5,12,15, 7,10)( 3,14,13, 9, 8, 4)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $135$ | $4$ | $( 2, 8, 5,14)( 3,15, 9,12)( 4, 7,13,10)$ |
| $ 12, 3 $ | $135$ | $12$ | $( 1, 6,11)( 2, 8, 5, 9,12, 3,15, 4, 7,13,10,14)$ |
| $ 12, 3 $ | $135$ | $12$ | $( 1,11, 6)( 2, 8, 5, 4, 7,13,10, 9,12, 3,15,14)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $135$ | $4$ | $( 2,14, 5, 8)( 3,12, 9,15)( 4,10,13, 7)$ |
| $ 12, 3 $ | $135$ | $12$ | $( 1, 6,11)( 2, 9,15, 3,12, 4,10,13, 7,14, 5, 8)$ |
| $ 12, 3 $ | $135$ | $12$ | $( 1,11, 6)( 2, 4,10,13, 7, 9,15, 3,12,14, 5, 8)$ |
Group invariants
| Order: | $1620=2^{2} \cdot 3^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1620, 421] |
| Character table: Data not available. |