Properties

Label 2.8.31.238
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(31\)
Galois group $Z_8 : Z_8^\times$ (as 8T15)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 16 x^{7} + 28 x^{4} + 8 x^{2} + 16 x + 42\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification exponent $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $31$
Discriminant root field: $\Q_{2}(\sqrt{-2\cdot 5})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3, 4, 5]$

Intermediate fields

$\Q_{2}(\sqrt{2\cdot 5})$, 2.4.11.20

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 16 x^{7} + 28 x^{4} + 8 x^{2} + 16 x + 42 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$,$z^{4} + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[24, 16, 8, 0]$

Invariants of the Galois closure

Galois group:$D_8:C_2$ (as 8T15)
Inertia group:$D_8$ (as 8T6)
Wild inertia group:$D_8$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:$[2, 3, 4, 5]$
Galois mean slope:$4$
Galois splitting model:$x^{8} - 80 x^{4} - 3240$