Defining polynomial
\(x^{8} + 4 x^{6} + 2 x^{4} + 12 x^{2} + 8 x + 10\) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $8$ |
Ramification exponent $e$: | $8$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $24$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $-1$ |
$\card{ \Aut(K/\Q_{ 2 }) }$: | $4$ |
This field is not Galois over $\Q_{2}.$ | |
Visible slopes: | $[2, 3, 4]$ |
Intermediate fields
$\Q_{2}(\sqrt{-1})$, 2.4.8.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: | \( x^{8} + 4 x^{6} + 2 x^{4} + 12 x^{2} + 8 x + 10 \) |
Ramification polygon
Residual polynomials: | $z + 1$,$z^{2} + 1$,$z^{4} + 1$ |
Associated inertia: | $1$,$1$,$1$ |
Indices of inseparability: | $[17, 10, 4, 0]$ |
Invariants of the Galois closure
Galois group: | $C_4\wr C_2$ (as 8T17) |
Inertia group: | $Q_8$ (as 8T5) |
Wild inertia group: | $Q_8$ |
Unramified degree: | $4$ |
Tame degree: | $1$ |
Wild slopes: | $[2, 3, 4]$ |
Galois mean slope: | $3$ |
Galois splitting model: | $x^{8} - 4 x^{4} + 20$ |