Properties

Label 2.8.24.44
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(24\)
Galois group $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{4} + 8 x^{2} + 8 x + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification exponent $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3, 7/2, 7/2]$

Intermediate fields

$\Q_{2}(\sqrt{2\cdot 5})$, 2.4.10.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 4 x^{4} + 8 x^{2} + 8 x + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 1$,$z^{4} + 1$
Associated inertia:$2$,$1$
Indices of inseparability:$[17, 16, 8, 0]$

Invariants of the Galois closure

Galois group:$C_2\wr C_2^2$ (as 8T29)
Inertia group:$C_2^2\wr C_2$ (as 8T18)
Wild inertia group:$C_2^2\wr C_2$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:$[2, 2, 3, 7/2, 7/2]$
Galois mean slope:$51/16$
Galois splitting model:$x^{8} - 4 x^{6} - 40 x^{5} + 86 x^{4} + 80 x^{3} - 124 x^{2} - 80 x - 9$