Base \(\Q_{2}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(6\)
Galois group $S_4$ (as 6T8)

Related objects

Learn more

Defining polynomial

\(x^{6} + 2 x + 2\)  Toggle raw display


Base field: $\Q_{2}$
Degree $d$: $6$
Ramification exponent $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}.$

Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{6} + 2 x + 2 \)  Toggle raw display

Invariants of the Galois closure

Galois group:$S_4$ (as 6T8)
Inertia group:$A_4$
Wild inertia group:$C_2^2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3]
Galois mean slope:$7/6$
Galois splitting model:$x^{6} - 12 x^{3} + 18 x + 30$