$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Unramified subfield: | 2.6.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{6} + x^{4} + x^{3} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{2} + \left(2 t^{3} + 2 t^{2} + 2\right) x + 2 \)
$\ \in\Q_{2}(t)[x]$
|
| Galois degree: |
$384$
|
| Galois group: |
$C_2\wr C_6$ (as 12T134)
|
| Inertia group: |
Intransitive group isomorphic to $C_2^6$
|
| Wild inertia group: |
$C_2^6$
|
| Galois unramified degree: |
$6$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 2, 2, 2, 2]$
|
| Galois Swan slopes: |
$[1,1,1,1,1,1]$
|
| Galois mean slope: |
$1.96875$
|
| Galois splitting model: | $x^{12} + 4 x^{10} - 2 x^{8} - 22 x^{6} - 24 x^{4} - 9 x^{2} - 1$ |