Select desired size of Galois group.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.6.2.12a1.1 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_6\times C_2$ (as 12T2) |
$12$ |
$12$ |
$[2]^{6}$ |
$[1]^{6}$ |
$[\ ]$ |
$[\ ]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^2 + 1)$ |
$[1, 2]$ |
| 2.6.2.12a1.2 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x^{3} + 2$ |
$C_{12}$ (as 12T1) |
$12$ |
$12$ |
$[2]^{6}$ |
$[1]^{6}$ |
$[\ ]$ |
$[\ ]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^2 + 1)$ |
$[1, 4]$ |
| 2.6.2.12a2.1 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$D_4\times A_4$ (as 12T51) |
$96$ |
$2$ |
$[2, 2, 2, 2]^{6}$ |
$[1,1,1,1]^{6}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^3 + t)$ |
$[1, 3]$ |
| 2.6.2.12a2.2 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ |
$D_4\times A_4$ (as 12T51) |
$96$ |
$2$ |
$[2, 2, 2, 2]^{6}$ |
$[1,1,1,1]^{6}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^3 + t)$ |
$[1, 3]$ |
| 2.6.2.12a3.1 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x^{3} ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_2^3:A_4$ (as 12T58) |
$96$ |
$2$ |
$[2, 2, 2, 2]^{6}$ |
$[1,1,1,1]^{6}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^3)$ |
$[1, 3]$ |
| 2.6.2.12a3.2 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x^{3} ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 2, 2]^{12}$ |
$[1,1,1,1]^{12}$ |
$[2,2,2]^{2}$ |
$[1,1,1]^{2}$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^3)$ |
$[1, 3]$ |
| 2.6.2.12a4.1 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1,1]^{6}$ |
$[2,2,2,2,2]$ |
$[1,1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^3 + t^2 + 1)$ |
$[1, 3]$ |
| 2.6.2.12a4.2 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1,1]^{6}$ |
$[2,2,2,2,2]$ |
$[1,1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^3 + t^2 + 1)$ |
$[1, 3]$ |
| 2.6.2.12a5.1 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{3} + 2 x^{2} + 2 x\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2, 2]^{6}$ |
$[1,1]^{6}$ |
$[2]$ |
$[1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^4 + t^2 + t)$ |
$[1, 3]$ |
| 2.6.2.12a5.2 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{3} + 2 x^{2} + 2 x\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2, 2]^{6}$ |
$[1,1]^{6}$ |
$[2]$ |
$[1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^4 + t^2 + t)$ |
$[1, 3]$ |
| 2.6.2.12a6.1 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{4} + 2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1]^{6}$ |
$[2,2,2,2]$ |
$[1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^2 + t)$ |
$[1, 3]$ |
| 2.6.2.12a6.2 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{4} + 2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x^{2} + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1]^{6}$ |
$[2,2,2,2]$ |
$[1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^2 + t)$ |
$[1, 3]$ |
| 2.6.2.12a7.1 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x^{5} ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1,1]^{6}$ |
$[2,2,2,2,2]$ |
$[1,1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^4 + t^2 + t)$ |
$[1, 3]$ |
| 2.6.2.12a7.2 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x^{5} ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1,1]^{6}$ |
$[2,2,2,2,2]$ |
$[1,1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^4 + t^2 + t)$ |
$[1, 3]$ |
| 2.6.2.12a8.1 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{2}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1,1]^{6}$ |
$[2,2,2,2,2]$ |
$[1,1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + t$ |
$[1, 3]$ |
| 2.6.2.12a8.2 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{2}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1,1]^{6}$ |
$[2,2,2,2,2]$ |
$[1,1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + t$ |
$[1, 3]$ |
| 2.6.2.12a9.1 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$A_4 \times C_2$ (as 12T7) |
$24$ |
$4$ |
$[2, 2]^{6}$ |
$[1,1]^{6}$ |
$[2]$ |
$[1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^3 + 1)$ |
$[1, 3]$ |
| 2.6.2.12a9.2 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x^{2} + 2$ |
$C_4\times A_4$ (as 12T29) |
$48$ |
$4$ |
$[2, 2]^{12}$ |
$[1,1]^{12}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[1, 0]$ |
$[1]$ |
$z + (t^3 + 1)$ |
$[1, 3]$ |
| 2.6.2.12a10.1 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_2^2 \times A_4$ (as 12T25) |
$48$ |
$4$ |
$[2, 2, 2]^{6}$ |
$[1,1,1]^{6}$ |
$[2,2]$ |
$[1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^3 + t^2)$ |
$[1, 3]$ |
| 2.6.2.12a10.2 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x + 2$ |
$C_4\times A_4$ (as 12T29) |
$48$ |
$4$ |
$[2, 2, 2]^{6}$ |
$[1,1,1]^{6}$ |
$[2,2]$ |
$[1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^3 + t^2)$ |
$[1, 3]$ |
| 2.6.2.12a11.1 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2} + 2 x\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_2^3:A_4$ (as 12T58) |
$96$ |
$2$ |
$[2, 2, 2, 2]^{6}$ |
$[1,1,1,1]^{6}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t + 1)$ |
$[1, 3]$ |
| 2.6.2.12a11.2 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2} + 2 x\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 2, 2]^{12}$ |
$[1,1,1,1]^{12}$ |
$[2,2,2]^{2}$ |
$[1,1,1]^{2}$ |
$[1, 0]$ |
$[1]$ |
$z + (t + 1)$ |
$[1, 3]$ |
| 2.6.2.12a12.1 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{3}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1]^{6}$ |
$[2,2,2,2]$ |
$[1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^4 + t^2 + 1)$ |
$[1, 3]$ |
| 2.6.2.12a12.2 |
1 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{3}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x^{2} + 2$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1]^{6}$ |
$[2,2,2,2]$ |
$[1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^4 + t^2 + 1)$ |
$[1, 3]$ |
| 2.6.2.12a13.1 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1,1]^{6}$ |
$[2,2,2,2,2]$ |
$[1,1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^4)$ |
$[1, 3]$ |
| 2.6.2.12a13.2 |
2 |
$( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1,1]^{6}$ |
$[2,2,2,2,2]$ |
$[1,1,1,1,1]$ |
$[1, 0]$ |
$[1]$ |
$z + (t^5 + t^4)$ |
$[1, 3]$ |