Properties

Label 2.6.2.12a
Base 2.1.1.0a1.1
Degree \(12\)
e \(2\)
f \(6\)
c \(12\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{2} + 2 a_{1} x + 4 c_{2} + 2$

Invariants

Residue field characteristic: $2$
Degree: $12$
Base field: $\Q_{2}$
Ramification index $e$: $2$
Residue field degree $f$: $6$
Discriminant exponent $c$: $12$
Artin slopes: $[2]$
Swan slopes: $[1]$
Means: $\langle\frac{1}{2}\rangle$
Rams: $(1)$
Field count: $26$ (complete)
Ambiguity: $12$
Mass: $63$
Absolute Mass: $21/2$

Diagrams

Varying

Indices of inseparability: $[1,0]$
Associated inertia: $[1]$
Jump Set: $[1,2]$ (show 1), $[1,3]$ (show 24), $[1,4]$ (show 1)

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing all 26

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.6.2.12a1.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_6\times C_2$ (as 12T2) $12$ $12$ $[2]^{6}$ $[1]^{6}$ $[\ ]$ $[\ ]$ $[1, 0]$ $[1]$ $z + (t^2 + 1)$ $[1, 2]$
2.6.2.12a1.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x^{3} + 2$ $C_{12}$ (as 12T1) $12$ $12$ $[2]^{6}$ $[1]^{6}$ $[\ ]$ $[\ ]$ $[1, 0]$ $[1]$ $z + (t^2 + 1)$ $[1, 4]$
2.6.2.12a2.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $D_4\times A_4$ (as 12T51) $96$ $2$ $[2, 2, 2, 2]^{6}$ $[1,1,1,1]^{6}$ $[2,2,2]$ $[1,1,1]$ $[1, 0]$ $[1]$ $z + (t^3 + t)$ $[1, 3]$
2.6.2.12a2.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ $D_4\times A_4$ (as 12T51) $96$ $2$ $[2, 2, 2, 2]^{6}$ $[1,1,1,1]^{6}$ $[2,2,2]$ $[1,1,1]$ $[1, 0]$ $[1]$ $z + (t^3 + t)$ $[1, 3]$
2.6.2.12a3.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x^{3} ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_2^3:A_4$ (as 12T58) $96$ $2$ $[2, 2, 2, 2]^{6}$ $[1,1,1,1]^{6}$ $[2,2,2]$ $[1,1,1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^3)$ $[1, 3]$
2.6.2.12a3.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x^{3} ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x + 2$ $C_2^4:C_{12}$ (as 12T105) $192$ $2$ $[2, 2, 2, 2]^{12}$ $[1,1,1,1]^{12}$ $[2,2,2]^{2}$ $[1,1,1]^{2}$ $[1, 0]$ $[1]$ $z + (t^5 + t^3)$ $[1, 3]$
2.6.2.12a4.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_2\wr C_6$ (as 12T134) $384$ $2$ $[2, 2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1,1]^{6}$ $[2,2,2,2,2]$ $[1,1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^3 + t^2 + 1)$ $[1, 3]$
2.6.2.12a4.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ $C_2\wr C_6$ (as 12T134) $384$ $2$ $[2, 2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1,1]^{6}$ $[2,2,2,2,2]$ $[1,1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^3 + t^2 + 1)$ $[1, 3]$
2.6.2.12a5.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{3} + 2 x^{2} + 2 x\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $D_4 \times C_3$ (as 12T14) $24$ $6$ $[2, 2]^{6}$ $[1,1]^{6}$ $[2]$ $[1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^4 + t^2 + t)$ $[1, 3]$
2.6.2.12a5.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{3} + 2 x^{2} + 2 x\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ $D_4 \times C_3$ (as 12T14) $24$ $6$ $[2, 2]^{6}$ $[1,1]^{6}$ $[2]$ $[1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^4 + t^2 + t)$ $[1, 3]$
2.6.2.12a6.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{4} + 2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_2^4:A_4$ (as 12T87) $192$ $2$ $[2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1]^{6}$ $[2,2,2,2]$ $[1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^2 + t)$ $[1, 3]$
2.6.2.12a6.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{4} + 2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x^{2} + 2$ $C_2^4:C_{12}$ (as 12T105) $192$ $2$ $[2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1]^{6}$ $[2,2,2,2]$ $[1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^2 + t)$ $[1, 3]$
2.6.2.12a7.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x^{5} ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_2\wr C_6$ (as 12T134) $384$ $2$ $[2, 2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1,1]^{6}$ $[2,2,2,2,2]$ $[1,1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^4 + t^2 + t)$ $[1, 3]$
2.6.2.12a7.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + 2 x^{5} ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ $C_2\wr C_6$ (as 12T134) $384$ $2$ $[2, 2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1,1]^{6}$ $[2,2,2,2,2]$ $[1,1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^4 + t^2 + t)$ $[1, 3]$
2.6.2.12a8.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{2}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_2\wr C_6$ (as 12T134) $384$ $2$ $[2, 2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1,1]^{6}$ $[2,2,2,2,2]$ $[1,1,1,1,1]$ $[1, 0]$ $[1]$ $z + t$ $[1, 3]$
2.6.2.12a8.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{2}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ $C_2\wr C_6$ (as 12T134) $384$ $2$ $[2, 2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1,1]^{6}$ $[2,2,2,2,2]$ $[1,1,1,1,1]$ $[1, 0]$ $[1]$ $z + t$ $[1, 3]$
2.6.2.12a9.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $A_4 \times C_2$ (as 12T7) $24$ $4$ $[2, 2]^{6}$ $[1,1]^{6}$ $[2]$ $[1]$ $[1, 0]$ $[1]$ $z + (t^3 + 1)$ $[1, 3]$
2.6.2.12a9.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x^{2} + 2$ $C_4\times A_4$ (as 12T29) $48$ $4$ $[2, 2]^{12}$ $[1,1]^{12}$ $[2]^{2}$ $[1]^{2}$ $[1, 0]$ $[1]$ $z + (t^3 + 1)$ $[1, 3]$
2.6.2.12a10.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_2^2 \times A_4$ (as 12T25) $48$ $4$ $[2, 2, 2]^{6}$ $[1,1,1]^{6}$ $[2,2]$ $[1,1]$ $[1, 0]$ $[1]$ $z + (t^3 + t^2)$ $[1, 3]$
2.6.2.12a10.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x + 2$ $C_4\times A_4$ (as 12T29) $48$ $4$ $[2, 2, 2]^{6}$ $[1,1,1]^{6}$ $[2,2]$ $[1,1]$ $[1, 0]$ $[1]$ $z + (t^3 + t^2)$ $[1, 3]$
2.6.2.12a11.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2} + 2 x\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_2^3:A_4$ (as 12T58) $96$ $2$ $[2, 2, 2, 2]^{6}$ $[1,1,1,1]^{6}$ $[2,2,2]$ $[1,1,1]$ $[1, 0]$ $[1]$ $z + (t + 1)$ $[1, 3]$
2.6.2.12a11.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{2} + 2 x\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x + 2$ $C_2^4:C_{12}$ (as 12T105) $192$ $2$ $[2, 2, 2, 2]^{12}$ $[1,1,1,1]^{12}$ $[2,2,2]^{2}$ $[1,1,1]^{2}$ $[1, 0]$ $[1]$ $z + (t + 1)$ $[1, 3]$
2.6.2.12a12.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{3}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_2^4:C_{12}$ (as 12T105) $192$ $2$ $[2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1]^{6}$ $[2,2,2,2]$ $[1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^4 + t^2 + 1)$ $[1, 3]$
2.6.2.12a12.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{3}\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 4 x^{2} + 2$ $C_2^4:A_4$ (as 12T87) $192$ $2$ $[2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1]^{6}$ $[2,2,2,2]$ $[1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^4 + t^2 + 1)$ $[1, 3]$
2.6.2.12a13.1 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 2$ $C_2\wr C_6$ (as 12T134) $384$ $2$ $[2, 2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1,1]^{6}$ $[2,2,2,2,2]$ $[1,1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^4)$ $[1, 3]$
2.6.2.12a13.2 $( x^{6} + x^{4} + x^{3} + x + 1 )^{2} + \left(2 x^{5} + 2 x^{4} + 2 x^{3} + 2\right) ( x^{6} + x^{4} + x^{3} + x + 1 ) + 6$ $C_2\wr C_6$ (as 12T134) $384$ $2$ $[2, 2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1,1]^{6}$ $[2,2,2,2,2]$ $[1,1,1,1,1]$ $[1, 0]$ $[1]$ $z + (t^5 + t^4)$ $[1, 3]$
  displayed columns for results