Learn more

Refine search


Results (30 matches)

  displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
12.2.564668382613504.1 $x^{12} + 4 x^{10} - 2 x^{8} - 22 x^{6} - 24 x^{4} - 9 x^{2} - 1$ $-\,2^{12}\cdot 13^{10}$ $C_2\wr C_6$ (as 12T134) trivial $210.020992904$
12.2.2754990144000000.1 $x^{12} + 6 x^{10} + 6 x^{8} - 20 x^{6} - 42 x^{4} - 21 x^{2} - 1$ $-\,2^{12}\cdot 3^{16}\cdot 5^{6}$ $C_2\wr C_6$ (as 12T134) trivial $531.8214388817978$
12.0.10070955730726912.1 $x^{12} + 13 x^{10} + 60 x^{8} + 121 x^{6} + 111 x^{4} + 46 x^{2} + 7$ $2^{12}\cdot 7\cdot 592661^{2}$ $C_2^6.S_6$ (as 12T293) $[4]$ $167.472794978$
16.4.101...000.4 $x^{16} + 8 x^{14} + 22 x^{12} + 17 x^{10} - 27 x^{8} - 58 x^{6} - 33 x^{4} - 2 x^{2} + 1$ $2^{16}\cdot 5^{8}\cdot 251^{4}$ $C_2^7.(C_2\times S_4)$ (as 16T1665) trivial $4719.24941014$
16.0.157...000.1 $x^{16} + 4 x^{14} + 5 x^{12} + 6 x^{10} + 19 x^{8} + 41 x^{6} + 40 x^{4} + 14 x^{2} + 1$ $2^{16}\cdot 5^{12}\cdot 9929^{2}$ $C_2^6.S_4\wr C_2$ (as 16T1868) $[2]$ $5197.82838653$
16.4.692...728.3 $x^{16} + 14 x^{14} + 63 x^{12} + 85 x^{10} - 404 x^{8} - 1479 x^{6} - 1923 x^{4} + 2777$ $2^{22}\cdot 2777^{5}$ $C_2\wr Q_8.S_4$ (as 16T1847) trivial $601871.2421$
16.8.161...000.1 $x^{16} + x^{14} - 94 x^{12} + 46 x^{10} + 346 x^{8} - 190 x^{6} - 160 x^{4} + 50 x^{2} + 25$ $2^{16}\cdot 3^{12}\cdot 5^{10}\cdot 83^{4}$ $C_2^6:(C_2\times S_4)$ (as 16T1521) trivial $3993464.92878$
16.12.161...000.1 $x^{16} - 20 x^{14} + 134 x^{12} - 335 x^{10} + 109 x^{8} + 650 x^{6} - 505 x^{4} - 250 x^{2} + 25$ $2^{16}\cdot 3^{12}\cdot 5^{10}\cdot 83^{4}$ $C_2^7.(C_2\times S_4)$ (as 16T1665) trivial $10051446.4363$
16.12.347...248.1 $x^{16} - 12 x^{14} + 37 x^{12} + 50 x^{10} - 404 x^{8} + 535 x^{6} - 74 x^{4} - 117 x^{2} + 13$ $2^{16}\cdot 11^{4}\cdot 13^{9}\cdot 43^{4}$ $C_2^6.(C_4\times S_4)$ (as 16T1667) trivial $16613259.0114$
16.8.125...000.1 $x^{16} - 2 x^{14} - 75 x^{12} - 148 x^{10} + 150 x^{8} + 355 x^{6} - 17 x^{4} - 29 x^{2} + 1$ $2^{16}\cdot 3^{4}\cdot 5^{8}\cdot 2791^{4}$ $C_2^6.\POPlus(4,3)$ (as 16T1836) trivial $13710304.2776$
16.12.367...000.1 $x^{16} - 85 x^{14} + 2739 x^{12} - 40352 x^{10} + 240461 x^{8} - 36335 x^{6} - 2915250 x^{4} + 1098500 x^{2} + 1373125$ $2^{16}\cdot 5^{4}\cdot 11^{4}\cdot 13^{11}\cdot 43^{4}$ $C_2^6.(C_4\times S_4)$ (as 16T1667) trivial $7280662137.23$
18.2.422...592.1 $x^{18} - 3 x^{12} + 9 x^{10} + 6 x^{8} - 23 x^{6} - 36 x^{4} - 15 x^{2} - 3$ $2^{12}\cdot 3^{19}\cdot 31^{6}$ $C_2^3\wr C_3.S_3^2$ (as 18T734) trivial $4119.5902444$
18.4.219...744.2 $x^{18} + 9 x^{14} - x^{12} + 27 x^{10} - 6 x^{8} + 25 x^{6} - 9 x^{4} - 6 x^{2} + 1$ $-\,2^{12}\cdot 3^{18}\cdot 7^{12}$ $C_2^4:A_4^2.D_6$ (as 18T657) trivial $12040.425107941623$
18.2.593...088.1 $x^{18} + 6 x^{16} + 6 x^{14} - 69 x^{12} - 441 x^{10} - 1341 x^{8} - 2241 x^{6} - 1998 x^{4} - 783 x^{2} - 27$ $2^{12}\cdot 3^{21}\cdot 7^{12}$ $C_2^4:A_4^2.D_6$ (as 18T657) trivial $33272.9745321$
18.12.110...176.1 $x^{18} - 10 x^{16} + 26 x^{14} + 29 x^{12} - 188 x^{10} + 125 x^{8} + 158 x^{6} - 81 x^{4} + 3 x^{2} + 1$ $-\,2^{12}\cdot 37^{4}\cdot 229^{6}$ $C_2\times A_4^3.S_4$ (as 18T764) trivial $382025.335018$
18.8.125...184.2 $x^{18} + 5 x^{16} + x^{14} - 20 x^{12} - 13 x^{10} + 22 x^{8} + 13 x^{6} - 8 x^{4} - 3 x^{2} + 1$ $-\,2^{12}\cdot 7^{12}\cdot 53^{6}$ $C_2^5.(A_4\times S_4)$ (as 18T544) trivial $189234.717146$
18.6.548...888.2 $x^{18} - 15 x^{16} + 87 x^{14} - 277 x^{12} + 576 x^{10} - 831 x^{8} + 851 x^{6} - 633 x^{4} + 321 x^{2} - 107$ $2^{12}\cdot 3^{6}\cdot 107^{9}$ $C_2^5.S_4^2$ (as 18T623) trivial $234279.764604$
18.2.161...304.1 $x^{18} - 18 x^{14} - 39 x^{12} - 9 x^{10} + 21 x^{6} + 9 x^{4} - 9 x^{2} - 4$ $2^{14}\cdot 3^{44}$ $C_2^2:A_4^2.S_4$ (as 18T593) trivial $1206135.67404$
18.0.484...912.2 $x^{18} + 18 x^{14} + 27 x^{12} + 72 x^{10} - 99 x^{6} - 27 x^{4} + 27 x^{2} + 48$ $-\,2^{14}\cdot 3^{45}$ $C_2^2:A_4^2.S_4$ (as 18T590) $[2]$ $292191.584311$
18.12.804...776.6 $x^{18} - 28 x^{14} + 54 x^{12} + 49 x^{10} - 189 x^{8} + 132 x^{6} - 7 x^{4} - 14 x^{2} + 1$ $-\,2^{18}\cdot 7^{12}\cdot 53^{6}$ $C_2^4:(C_6\times S_4)$ (as 18T367) trivial $3018182.39969$
18.0.886...752.4 $x^{18} + 2 x^{16} - 5 x^{14} + 13 x^{12} + 64 x^{10} + 45 x^{8} + 97 x^{6} + 153 x^{4} + 27$ $-\,2^{18}\cdot 3^{9}\cdot 107^{8}$ $C_2^6:S_3^2$ (as 18T371) $[2]$ $126720.97831$
18.0.220...376.1 $x^{18} + 20 x^{16} + 153 x^{14} + 573 x^{12} + 1136 x^{10} + 1219 x^{8} + 707 x^{6} + 211 x^{4} + 28 x^{2} + 1$ $-\,2^{12}\cdot 257^{6}\cdot 43237^{2}$ $C_2\times S_4^3.S_4$ (as 18T912) $[2, 8]$ $95074.4744327$
18.10.119...552.4 $x^{18} - 25 x^{16} - 245 x^{14} + 5904 x^{12} - 6438 x^{10} - 120153 x^{8} + 120584 x^{6} + 400574 x^{4} - 331462 x^{2} - 148877$ $2^{18}\cdot 7^{12}\cdot 53^{9}$ $C_2^4:(A_4\times S_4)$ (as 18T462) $[2]$ $372788420.8495806$
18.0.161...464.1 $x^{18} + 30 x^{16} + 298 x^{14} + 1453 x^{12} + 3945 x^{10} + 6162 x^{8} + 5379 x^{6} + 2364 x^{4} + 397 x^{2} + 4$ $-\,2^{18}\cdot 13^{8}\cdot 229^{8}$ $C_2\wr C_9.C_6$ (as 18T656) $[2, 2, 320]$ $2578541.04453$
18.16.180...000.1 $x^{18} - x^{17} - 128 x^{16} + 3 x^{15} + 6745 x^{14} + 7297 x^{13} - 182721 x^{12} - 427804 x^{11} + 2428094 x^{10} + 10108718 x^{9} - 6884230 x^{8} - 101964173 x^{7} - 171939012 x^{6} + 187792795 x^{5} + 1219578806 x^{4} + 2274145760 x^{3} + 2281855540 x^{2} + 1249636670 x + 295064741$ $-\,2^{12}\cdot 5^{9}\cdot 7^{12}\cdot 379^{2}\cdot 106405699^{2}$ $C_3^6.C_2\wr C_6$ (as 18T857) $[3]$ $127101380105000$
20.0.199...000.2 $x^{20} + 4 x^{18} + 7 x^{16} + 17 x^{14} + 52 x^{12} + 97 x^{10} + 115 x^{8} + 107 x^{6} + 84 x^{4} + 35 x^{2} + 5$ $2^{16}\cdot 5^{11}\cdot 53^{8}$ $C_2^8.(C_4\times A_5)$ (as 20T672) trivial $86312.90409176698$
20.6.626...696.2 $x^{20} - 3 x^{18} - 4 x^{16} + 28 x^{14} - 67 x^{12} + 83 x^{10} - 40 x^{8} - 17 x^{6} + 21 x^{4} - 2 x^{2} - 1$ $-\,2^{20}\cdot 7^{4}\cdot 137^{4}\cdot 163^{4}$ $C_2^{10}.C_2^4:S_5$ (as 20T992) trivial $306007.97270574694$
20.8.700...000.1 $x^{20} + 30 x^{18} + 107 x^{16} - 3047 x^{14} - 19063 x^{12} + 85855 x^{10} + 623392 x^{8} - 697444 x^{6} - 5534298 x^{4} - 2254714 x^{2} + 1771561$ $2^{16}\cdot 5^{10}\cdot 11^{10}\cdot 149^{4}\cdot 541^{4}$ $C_2^9.\SOPlus(4,4)$ (as 20T1008) $[2]$ $60546016367200$
21.1.363...000.1 $x^{21} + 63 x^{17} - 84 x^{16} + 28 x^{15} + 1134 x^{13} - 3024 x^{12} + 3024 x^{11} - 1344 x^{10} + 5327 x^{9} - 20412 x^{8} + 31833 x^{7} - 20034 x^{6} - 5292 x^{5} + 18648 x^{4} - 14672 x^{3} + 6048 x^{2} - 1344 x + 128$ $2^{12}\cdot 3^{19}\cdot 5^{9}\cdot 7^{22}$ $C_3^7:C_2\wr C_7.C_6$ (as 21T142) trivial $115877205330$
22.0.261...704.1 $x^{22} + 6 x^{20} + 16 x^{18} + 18 x^{16} + 4 x^{14} + 6 x^{12} + 25 x^{10} + 3 x^{8} - 19 x^{6} - 4 x^{4} + 4 x^{2} + 1$ $-\,2^{22}\cdot 971^{2}\cdot 25709231^{2}$ $C_2^{10}.(C_2\times S_{11})$ (as 22T53) trivial $24986.318925$
  displayed columns for results