Normalized defining polynomial
\( x^{21} + 63 x^{17} - 84 x^{16} + 28 x^{15} + 1134 x^{13} - 3024 x^{12} + 3024 x^{11} - 1344 x^{10} + 5327 x^{9} - 20412 x^{8} + 31833 x^{7} - 20034 x^{6} - 5292 x^{5} + 18648 x^{4} - 14672 x^{3} + 6048 x^{2} - 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36353874781068335688593663064000000000=2^{12}\cdot 3^{19}\cdot 5^{9}\cdot 7^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{12} + \frac{3}{8} a^{11} - \frac{1}{4} a^{7} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{1}{16} a^{14} - \frac{3}{8} a^{13} - \frac{1}{64} a^{12} + \frac{7}{32} a^{11} - \frac{3}{8} a^{10} + \frac{1}{4} a^{9} - \frac{1}{32} a^{8} - \frac{3}{16} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{15}{64} a^{4} - \frac{13}{32} a^{3} + \frac{21}{64} a^{2} + \frac{5}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{3}{64} a^{15} - \frac{1}{8} a^{14} - \frac{209}{512} a^{13} - \frac{53}{128} a^{12} - \frac{31}{128} a^{11} - \frac{1}{16} a^{10} + \frac{79}{256} a^{9} + \frac{7}{32} a^{8} - \frac{5}{16} a^{7} - \frac{1}{8} a^{6} + \frac{111}{512} a^{5} + \frac{17}{128} a^{4} - \frac{63}{512} a^{3} - \frac{81}{256} a^{2} - \frac{17}{128} a - \frac{11}{64}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} + \frac{3}{512} a^{16} + \frac{7}{256} a^{15} - \frac{209}{4096} a^{14} + \frac{645}{2048} a^{13} - \frac{489}{1024} a^{12} - \frac{67}{512} a^{11} - \frac{977}{2048} a^{10} + \frac{235}{1024} a^{9} - \frac{31}{64} a^{8} - \frac{5}{32} a^{7} + \frac{1263}{4096} a^{6} + \frac{785}{2048} a^{5} + \frac{1865}{4096} a^{4} - \frac{53}{128} a^{3} - \frac{33}{512} a^{2} - \frac{23}{128} a - \frac{43}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{3}{8192} a^{17} - \frac{1}{1024} a^{16} + \frac{143}{32768} a^{15} - \frac{33}{2048} a^{14} + \frac{49}{1024} a^{13} - \frac{65}{512} a^{12} + \frac{5751}{16384} a^{11} + \frac{47}{4096} a^{10} - \frac{1465}{4096} a^{9} + \frac{11}{32} a^{8} + \frac{7151}{32768} a^{7} + \frac{529}{4096} a^{6} - \frac{13699}{32768} a^{5} - \frac{7467}{16384} a^{4} + \frac{1367}{4096} a^{3} + \frac{117}{2048} a^{2} - \frac{23}{2048} a + \frac{1}{1024}$, $\frac{1}{786432} a^{20} - \frac{5}{393216} a^{19} - \frac{23}{196608} a^{18} + \frac{19}{98304} a^{17} + \frac{5455}{786432} a^{16} + \frac{6475}{393216} a^{15} - \frac{133}{3072} a^{14} - \frac{215}{768} a^{13} + \frac{150583}{393216} a^{12} - \frac{36359}{196608} a^{11} + \frac{39757}{98304} a^{10} + \frac{8779}{49152} a^{9} - \frac{224273}{786432} a^{8} + \frac{177271}{393216} a^{7} - \frac{364595}{786432} a^{6} - \frac{76561}{196608} a^{5} + \frac{78607}{196608} a^{4} + \frac{1433}{3072} a^{3} - \frac{1237}{49152} a^{2} - \frac{4157}{12288} a + \frac{4253}{12288}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 115877205330 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.1.102942875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | $18{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.7 | $x^{12} - 48 x^{10} + 53 x^{8} + 40 x^{6} + 27 x^{4} - 56 x^{2} + 47$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.9.9.4 | $x^{9} + 3 x^{6} + 9 x^{4} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| 3.9.9.7 | $x^{9} + 18 x^{3} + 54 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||