Defining polynomial
$( x^{4} + x + 1 )^{4} + 8 x ( x^{4} + x + 1 )^{3} + 8 x^{3} + 2$
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $44$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[3, 4]$ |
Visible Swan slopes: | $[2,3]$ |
Means: | $\langle1, 2\rangle$ |
Rams: | $(2, 4)$ |
Jump set: | $[1, 3, 7]$ |
Roots of unity: | $30 = (2^{ 4 } - 1) \cdot 2$ |
Intermediate fields
$\Q_{2}(\sqrt{5})$, 2.4.1.0a1.1, 2.4.2.12a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{4} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + \left(8 t + 8\right) x^{3} + 8 t^{2} x + 8 t^{3} + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[8, 4, 0]$ |
Invariants of the Galois closure
Galois degree: | $1024$ |
Galois group: | $C_2^7.C_8$ (as 16T1223) |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | $4$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]$ |
Galois Swan slopes: | $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},3]$ |
Galois mean slope: | $3.6171875$ |
Galois splitting model: | not computed |