Properties

Label 2.4.4.44a
Base 2.1.1.0a1.1
Degree \(16\)
e \(4\)
f \(4\)
c \(44\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{4} + 8 b_{11} x^{3} + 4 b_{6} x^{2} + 8 b_{9} x + 8 c_{8} + 16 c_{12} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $44$
Artin slopes: $[3,4]$
Swan slopes: $[2,3]$
Means: $\langle1,2\rangle$
Rams: $(2,4)$
Field count: $2158$ (complete)
Ambiguity: $16$
Mass: $4096$
Absolute Mass: $1024$

Diagrams

Varying

Indices of inseparability: $[8,4,0]$
Associated inertia: $[1,1]$
Jump Set: $[1,3,7]$

Galois groups and Hidden Artin slopes

Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.

Fields


Showing 1-50 of at least 1000

Next   To download results, determine the number of results.
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.4.4.44a1.1 $( x^{4} + x + 1 )^{4} + 2$ $C_4 \times D_4$ (as 16T19) $32$ $8$ $[2, 3, 4]^{4}$ $[1,2,3]^{4}$ $[2]$ $[1]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.2 $( x^{4} + x + 1 )^{4} + 16 x^{3} + 2$ $(C_8:C_2):C_2$ (as 16T16) $32$ $8$ $[2, 3, 4]^{4}$ $[1,2,3]^{4}$ $[2]$ $[1]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.3 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + 2$ $(C_2^2\times D_4):C_4$ (as 16T315) $128$ $2$ $[2, 2, 2, 3, 4]^{4}$ $[1,1,1,2,3]^{4}$ $[2,2,2]$ $[1,1,1]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.4 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + 16 x^{3} + 2$ $(C_2^2\times D_4):C_4$ (as 16T315) $128$ $2$ $[2, 2, 2, 3, 4]^{4}$ $[1,1,1,2,3]^{4}$ $[2,2,2]$ $[1,1,1]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.5 $( x^{4} + x + 1 )^{4} + 8 x ( x^{4} + x + 1 )^{3} + 2$ $C_2^3.C_2^3$ (as 16T112) $64$ $4$ $[2, 2, 3, 4]^{4}$ $[1,1,2,3]^{4}$ $[2,2]$ $[1,1]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.6 $( x^{4} + x + 1 )^{4} + 8 x ( x^{4} + x + 1 )^{3} + 16 x^{3} + 2$ $\OD_{16}:C_2^2$ (as 16T99) $64$ $4$ $[2, 2, 3, 4]^{4}$ $[1,1,2,3]^{4}$ $[2,2]$ $[1,1]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.7 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 )^{3} + 2$ $C_4 \times D_4$ (as 16T19) $32$ $8$ $[2, 3, 4]^{4}$ $[1,2,3]^{4}$ $[2]$ $[1]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.8 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 )^{3} + 16 x^{3} + 2$ $(C_8:C_2):C_2$ (as 16T16) $32$ $8$ $[2, 3, 4]^{4}$ $[1,2,3]^{4}$ $[2]$ $[1]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.9 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.10 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.11 $( x^{4} + x + 1 )^{4} + 8 x^{2} ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.12 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2}\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.13 $( x^{4} + x + 1 )^{4} + 8 x ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.14 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.15 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.16 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2} + 8 x\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.17 $( x^{4} + x + 1 )^{4} + 8 ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.18 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.19 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.20 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2} + 8\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.21 $( x^{4} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.22 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x + 8\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.23 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8 x + 8\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.24 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2} + 8 x + 8\right) ( x^{4} + x + 1 )^{3} + 8 x^{3} ( x^{4} + x + 1 ) + 2$ $C_2\wr (C_2\times C_4)$ (as 16T1379) $2048$ $2$ $[2, 2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,2,\frac{7}{2},\frac{7}{2},\frac{7}{2}]$ $[1,1,1,1,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.25 $( x^{4} + x + 1 )^{4} + 8 x ( x^{4} + x + 1 ) + 2$ $C_2^3\wr C_2:C_4$ (as 16T820) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.26 $( x^{4} + x + 1 )^{4} + 8 x ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $C_2^6:(C_2\times C_4)$ (as 16T815) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.27 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 2$ $C_2^6:(C_2\times C_4)$ (as 16T815) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.28 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $C_2^3\wr C_2:C_4$ (as 16T820) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.29 $( x^{4} + x + 1 )^{4} + 8 x^{2} ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 2$ $C_2^3\wr C_2:C_4$ (as 16T820) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.30 $( x^{4} + x + 1 )^{4} + 8 x^{2} ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $C_2^6:(C_2\times C_4)$ (as 16T815) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.31 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2}\right) ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 2$ $C_2^6:(C_2\times C_4)$ (as 16T815) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.32 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2}\right) ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $C_2^3\wr C_2:C_4$ (as 16T820) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.33 $( x^{4} + x + 1 )^{4} + 8 ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 2$ $C_2^3\wr C_2:C_4$ (as 16T820) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.34 $( x^{4} + x + 1 )^{4} + 8 ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $C_2^6:(C_2\times C_4)$ (as 16T815) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.35 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8\right) ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 2$ $C_2^6:(C_2\times C_4)$ (as 16T815) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.36 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8\right) ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $C_2^3\wr C_2:C_4$ (as 16T820) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.37 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8\right) ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 2$ $C_2^3\wr C_2:C_4$ (as 16T820) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.38 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8\right) ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $C_2^6:(C_2\times C_4)$ (as 16T815) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.39 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2} + 8\right) ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 2$ $C_2^6:(C_2\times C_4)$ (as 16T815) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.40 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2} + 8\right) ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $C_2^3\wr C_2:C_4$ (as 16T820) $512$ $2$ $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ $[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ $[2,2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,1,\frac{5}{2},\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.41 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 2$ $C_2^4.D_4$ (as 16T208) $128$ $4$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.42 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $(C_2\times C_8):D_4$ (as 16T279) $128$ $4$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.43 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 2$ $C_2^5:C_4$ (as 16T261) $128$ $4$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.44 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $(C_2^3\times C_4):C_4$ (as 16T292) $128$ $4$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.45 $( x^{4} + x + 1 )^{4} + 8 x ( x^{4} + x + 1 )^{3} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 2$ $C_2^4.D_4$ (as 16T268) $128$ $2$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.46 $( x^{4} + x + 1 )^{4} + 8 x ( x^{4} + x + 1 )^{3} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $\OD_{16}:D_4$ (as 16T278) $128$ $2$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.47 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x\right) ( x^{4} + x + 1 )^{3} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 2$ $C_2^4.D_4$ (as 16T317) $128$ $2$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.48 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x\right) ( x^{4} + x + 1 )^{3} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $(C_2^2\times D_4):C_4$ (as 16T315) $128$ $2$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.49 $( x^{4} + x + 1 )^{4} + 8 ( x^{4} + x + 1 )^{3} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 2$ $C_2^4.D_4$ (as 16T208) $128$ $4$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.50 $( x^{4} + x + 1 )^{4} + 8 ( x^{4} + x + 1 )^{3} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 ) + 16 x^{3} + 2$ $(C_2\times C_8):D_4$ (as 16T279) $128$ $4$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
Next   To download results, determine the number of results.