$( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + 8 x ( x^{4} + x + 1 ) + 2$
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | 2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{4} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + \left(8 t^{3} + 8\right) x^{3} + 8 t x + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$512$
|
Galois group: |
$C_2^6:(C_2\times C_4)$ (as 16T815)
|
Inertia group: |
Intransitive group isomorphic to $C_2^3\wr C_2$
|
Wild inertia group: |
$C_2^3\wr C_2$
|
Galois unramified degree: |
$4$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]$
|
Galois Swan slopes: |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]$
|
Galois mean slope: |
$3.609375$
|
Galois splitting model: |
$x^{16} - 16 x^{14} + 74 x^{12} + 8 x^{10} - 416 x^{8} - 1664 x^{6} + 4736 x^{4} + 5632 x^{2} + 1936$
|