Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1223$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $7$ | |
| Generators: | (1,8,14,4,10,15,6,11,2,7,13,3,9,16,5,12), (1,15,14,11,9,8,5,3,2,16,13,12,10,7,6,4) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ 32: $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T84 128: 16T228 256: 16T565 512: 16T817 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8$
Low degree siblings
16T1155 x 8, 16T1223 x 7, 32T35849 x 8, 32T35850 x 16, 32T35851 x 8, 32T35852 x 8, 32T35853 x 16, 32T35854 x 4, 32T35855 x 4, 32T36405 x 32, 32T36406 x 8, 32T36407 x 32, 32T36408 x 16, 32T36409 x 8, 32T36410 x 16, 32T36411 x 4, 32T36412 x 16, 32T36413 x 16, 32T36414 x 16, 32T36415 x 16, 32T36416 x 16, 32T36417 x 16, 32T36418 x 8, 32T36419 x 4, 32T36420 x 8, 32T36421 x 16, 32T48622 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5,14, 6,13)( 7,16, 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,14,10, 6, 2,13, 9, 5)( 3,16,12, 8, 4,15,11, 7)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 6, 9,14, 2, 5,10,13)( 3, 8,11,16, 4, 7,12,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)( 9,10)(13,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 7, 8)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 9,10)(11,12)(13,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5,14, 6,13)( 7,15, 8,16)$ |
| $ 16 $ | $64$ | $16$ | $( 1, 8,14, 4,10,15, 6,11, 2, 7,13, 3, 9,16, 5,12)$ |
| $ 16 $ | $64$ | $16$ | $( 1,15,13,12,10, 7, 5, 4, 2,16,14,11, 9, 8, 6, 3)$ |
| $ 16 $ | $64$ | $16$ | $( 1, 4, 6, 7, 9,12,14,15, 2, 3, 5, 8,10,11,13,16)$ |
| $ 16 $ | $64$ | $16$ | $( 1,11, 5,15, 9, 4,13, 8, 2,12, 6,16,10, 3,14, 7)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,10, 2, 9)( 3,12)( 4,11)( 5,14, 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5, 6)( 7, 8)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(15,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,14,10, 6, 2,13, 9, 5)( 3,16,11, 8, 4,15,12, 7)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 6, 9,14, 2, 5,10,13)( 3, 8,11,15, 4, 7,12,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 5, 6)( 9,10)(15,16)$ |
| $ 4, 4, 4, 4 $ | $64$ | $4$ | $( 1,14, 9, 5)( 2,13,10, 6)( 3,16,11, 7)( 4,15,12, 8)$ |
| $ 4, 4, 4, 4 $ | $64$ | $4$ | $( 1, 6, 9,14)( 2, 5,10,13)( 3, 8,11,16)( 4, 7,12,15)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 7, 8)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 9,10)(11,12)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)( 9,10)$ |
| $ 16 $ | $64$ | $16$ | $( 1, 8,14, 3, 9,16, 6,11, 2, 7,13, 4,10,15, 5,12)$ |
| $ 16 $ | $64$ | $16$ | $( 1,15,14,12,10, 7, 5, 4, 2,16,13,11, 9, 8, 6, 3)$ |
| $ 16 $ | $64$ | $16$ | $( 1, 4, 6, 7, 9,12,14,16, 2, 3, 5, 8,10,11,13,15)$ |
| $ 16 $ | $64$ | $16$ | $( 1,11, 5,15,10, 3,14, 8, 2,12, 6,16, 9, 4,13, 7)$ |
Group invariants
| Order: | $1024=2^{10}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |