Properties

Label 2.4.4.44a1.2002
Base \(\Q_{2}\)
Degree \(16\)
e \(4\)
f \(4\)
c \(44\)
Galois group $C_2^5:C_4$ (as 16T227)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x + 12\right) ( x^{4} + x + 1 )^{3} + \left(4 x^{2} + 4 x + 4\right) ( x^{4} + x + 1 )^{2} + 8 ( x^{4} + x + 1 ) + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $44$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4]$
Visible Swan slopes:$[2,3]$
Means:$\langle1, 2\rangle$
Rams:$(2, 4)$
Jump set:$[1, 3, 7]$
Roots of unity:$30 = (2^{ 4 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.4.1.0a1.1, 2.2.2.6a1.3, 2.2.2.6a1.4, 2.4.2.12a1.7, 2.2.4.22a1.33, 2.2.4.22a1.36

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{4} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(8 t^{3} + 8\right) x^{3} + \left(4 t^{2} + 4 t\right) x^{2} + 8 x + 16 t^{3} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[8, 4, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^5:C_4$ (as 16T227)
Inertia group: Intransitive group isomorphic to $C_2^2\wr C_2$
Wild inertia group: $C_2^2\wr C_2$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, 4]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},3]$
Galois mean slope: $3.4375$
Galois splitting model: $x^{16} - 4 x^{14} + 16 x^{12} - 64 x^{10} + 136 x^{8} - 320 x^{6} + 440 x^{4} + 400$ Copy content Toggle raw display