Properties

Label 2.12.32.381
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $C_2^4.S_4$ (as 12T140)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 2 x^{10} + 4 x^{9} + 8 x^{8} + 12 x^{6} + 12 x^{4} + 8 x^{3} + 12 x^{2} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $32$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[8/3, 11/3]$

Intermediate fields

2.3.2.1, 2.6.10.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 2 x^{10} + 4 x^{9} + 8 x^{8} + 12 x^{6} + 12 x^{4} + 8 x^{3} + 12 x^{2} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$,$z^{8} + z^{4} + 1$
Associated inertia:$1$,$1$,$2$
Indices of inseparability:$[21, 10, 0]$

Invariants of the Galois closure

Galois group:$C_2^4.S_4$ (as 12T140)
Inertia group:$C_2^4.A_4$ (as 12T92)
Wild inertia group:$C_4^2:C_2^2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[2, 8/3, 8/3, 3, 11/3, 11/3]$
Galois mean slope:$41/12$
Galois splitting model:$x^{12} + 6 x^{8} + 12 x^{4} - 4$