Properties

Label 2.2.2.1
Base \(\Q_{2}\)
Degree \(2\)
e \(2\)
f \(1\)
c \(2\)
Galois group $C_2$ (as 2T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{2} + 2 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $2$
Ramification exponent $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $i$
$\card{ \Gal(K/\Q_{ 2 }) }$: $2$
This field is Galois and abelian over $\Q_{2}.$
Visible slopes:$[2]$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{2} + 2 x + 2 \) Copy content Toggle raw display

Ramification polygon

Data not computed

Invariants of the Galois closure

Galois group: $C_2$ (as 2T1)
Inertia group: $C_2$ (as 2T1)
Wild inertia group: $C_2$
Unramified degree: $1$
Tame degree: $1$
Wild slopes: $[2]$
Galois mean slope: $1$
Galois splitting model: $x^{2} + 2 x + 2$ Copy content Toggle raw display