Properties

Label 2.12.32.148
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(32\)
Galois group $S_3\times D_4$ (as 12T28)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{10} + 4 x^{9} + 4 x^{8} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $32$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3, 7/2]$

Intermediate fields

$\Q_{2}(\sqrt{-2\cdot 5})$, 2.3.2.1, 2.4.10.6, 2.6.11.13

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 4 x^{10} + 4 x^{9} + 4 x^{8} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$,$z^{8} + z^{4} + 1$
Associated inertia:$1$,$1$,$2$
Indices of inseparability:$[21, 12, 0]$

Invariants of the Galois closure

Galois group:$S_3\times D_4$ (as 12T28)
Inertia group:$C_3\times D_4$ (as 12T14)
Wild inertia group:$D_4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[2, 3, 7/2]$
Galois mean slope:$17/6$
Galois splitting model:$x^{12} + 6 x^{10} + 21 x^{8} + 72 x^{6} + 147 x^{4} + 162 x^{2} + 75$