Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $28$ | |
| Group : | $S_3\times D_4$ | |
| CHM label : | $D(4)[x]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7)(3,9)(5,11), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $D_{4}$ x 2, $C_2^3$ 12: $D_{6}$ x 3 16: $D_4\times C_2$ 24: $S_3 \times C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Low degree siblings
12T28 x 3, 24T52 x 2, 24T53 x 2, 24T54 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 6)( 3,11)( 5, 9)( 8,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 8)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 2,12)( 3,11)( 4,10)( 5, 9)( 6, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 12 $ | $4$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2, 7, 8)( 3,12, 9, 6)( 4, 5,10,11)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 2, 9,10, 5, 6)( 3, 4,11,12, 7, 8)$ |
| $ 6, 6 $ | $2$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 3)( 2, 8)( 4, 6)( 5,11)( 7, 9)(10,12)$ |
| $ 6, 3, 3 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2,10, 6)( 4,12, 8)$ |
| $ 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 38] |
| Character table: |
2 4 4 3 3 3 2 3 2 3 4 2 3 3 3 4
3 1 . 1 . . 1 . 1 1 . 1 1 1 1 1
1a 2a 2b 2c 2d 12a 4a 6a 6b 2e 6c 4b 2f 3a 2g
2P 1a 1a 1a 1a 1a 6b 2g 3a 3a 1a 3a 2g 1a 3a 1a
3P 1a 2a 2b 2c 2d 4b 4a 2f 2g 2e 2b 4b 2f 1a 2g
5P 1a 2a 2b 2c 2d 12a 4a 6a 6b 2e 6c 4b 2f 3a 2g
7P 1a 2a 2b 2c 2d 12a 4a 6a 6b 2e 6c 4b 2f 3a 2g
11P 1a 2a 2b 2c 2d 12a 4a 6a 6b 2e 6c 4b 2f 3a 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 -1 1 1 1 -1 -1 -1 1 1 1
X.3 1 -1 -1 1 1 1 -1 -1 1 -1 -1 1 -1 1 1
X.4 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 1
X.5 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1
X.6 1 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 1 1
X.7 1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 1 1
X.8 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 1
X.9 2 . -2 . . -1 . 1 -1 . 1 2 -2 -1 2
X.10 2 . -2 . . 1 . -1 -1 . 1 -2 2 -1 2
X.11 2 . 2 . . -1 . -1 -1 . -1 2 2 -1 2
X.12 2 . 2 . . 1 . 1 -1 . -1 -2 -2 -1 2
X.13 2 -2 . . . . . . -2 2 . . . 2 -2
X.14 2 2 . . . . . . -2 -2 . . . 2 -2
X.15 4 . . . . . . . 2 . . . . -2 -4
|