Properties

Label 2.12.29.216
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(29\)
Galois group $C_2\wr (C_2\times S_4)$ (as 12T250)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{10} + 2 x^{8} + 4 x^{7} + 14 x^{6} + 8 x^{2} + 8 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $29$
Discriminant root field: $\Q_{2}(\sqrt{-2\cdot 5})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 7/2]$

Intermediate fields

2.3.2.1, 2.6.8.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 4 x^{10} + 2 x^{8} + 4 x^{7} + 14 x^{6} + 8 x^{2} + 8 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$,$z^{8} + z^{4} + 1$
Associated inertia:$1$,$1$,$2$
Indices of inseparability:$[18, 6, 0]$

Invariants of the Galois closure

Galois group:$C_2\wr (C_2\times S_4)$ (as 12T250)
Inertia group:$C_2\wr (C_2\times A_4)$ (as 12T222)
Wild inertia group:$D_4^3$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[4/3, 4/3, 2, 8/3, 8/3, 3, 10/3, 10/3, 7/2]$
Galois mean slope:$2563/768$
Galois splitting model: $x^{12} + 6 x^{10} - 90 x^{8} - 120 x^{6} + 2700 x^{4} - 5400 x^{2} - 9000$ Copy content Toggle raw display