Properties

Label 12T250
Order \(3072\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $250$
CHM label :  $[D(4)^{4}]S(3)=D(4)wrS(3)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,6,9,12), (3,9), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $C_2^3$
12:  $D_{6}$ x 3
24:  $S_4$ x 3, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 9
96:  $V_4^2:S_3$, 12T48 x 3
192:  12T100 x 3
384:  12T139
768:  16T1055
1536:  24T3386

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 4: None

Degree 6: $S_4\times C_2$

Low degree siblings

12T250 x 15, 24T5413 x 4, 24T5427 x 4, 24T5587 x 4, 24T5588 x 4, 24T5707 x 4, 24T5752 x 4, 24T6222 x 4, 24T6316 x 4, 24T6797 x 4, 24T7182 x 8, 24T7183 x 8, 24T7184 x 8, 24T7185 x 8, 24T7186 x 8, 24T7187 x 8, 24T7188 x 8, 24T7189 x 8, 24T7190 x 8, 24T7191 x 8, 24T7192 x 8, 24T7193 x 8, 24T7194 x 8, 24T7195 x 8, 24T7196 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3072=2^{10} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.