Properties

Label 2.1.8.18c1.4
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(18\)
Galois group $S_4\times C_2$ (as 8T24)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 2 x^{4} + 4 x^{3} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, \frac{8}{3}, \frac{8}{3}]$
Visible Swan slopes:$[1,\frac{5}{3},\frac{5}{3}]$
Means:$\langle\frac{1}{2}, \frac{13}{12}, \frac{11}{8}\rangle$
Rams:$(1, \frac{7}{3}, \frac{7}{3})$
Jump set:$[1, 2, 4, 16]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, 2.1.4.8a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 2 x^{4} + 4 x^{3} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[11, 11, 4, 0]$

Invariants of the Galois closure

Galois degree: $48$
Galois group: $C_2\times S_4$ (as 8T24)
Inertia group: $C_2\times A_4$ (as 8T13)
Wild inertia group: $C_2^3$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[2, \frac{8}{3}, \frac{8}{3}]$
Galois Swan slopes: $[1,\frac{5}{3},\frac{5}{3}]$
Galois mean slope: $2.3333333333333335$
Galois splitting model:$x^{8} - 4 x^{7} + 4 x^{6} - 6 x^{4} + 12 x^{3} - 2$