Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.8.18c1.1 |
4 |
$x^{8} + 2 x^{4} + 4 x^{3} + 2$ |
$S_4\times C_2$ (as 8T24) |
$48$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\ ]^{2}_{3}$ |
$[\ ]^{2}_{3}$ |
$[11, 11, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z + 1$ |
$[1, 5, 11, 19]$ |
2.1.8.18c1.2 |
4 |
$x^{8} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2$ |
$S_4\times C_2$ (as 8T24) |
$48$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\ ]^{2}_{3}$ |
$[\ ]^{2}_{3}$ |
$[11, 11, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z + 1$ |
$[1, 5, 11, 19]$ |
2.1.8.18c1.3 |
2 |
$x^{8} + 2 x^{4} + 4 x^{3} + 4 x^{2} + 2$ |
$V_4^2:(S_3\times C_2)$ (as 8T41) |
$192$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3}]^{2}_{3}$ |
$[11, 10, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z + 1$ |
$[1, 2, 11, 19]$ |
2.1.8.18c1.4 |
4 |
$x^{8} + 2 x^{4} + 4 x^{3} + 6$ |
$S_4\times C_2$ (as 8T24) |
$48$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\ ]^{2}_{3}$ |
$[\ ]^{2}_{3}$ |
$[11, 11, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z + 1$ |
$[1, 2, 4, 16]$ |
2.1.8.18c1.5 |
4 |
$x^{8} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 6$ |
$S_4\times C_2$ (as 8T24) |
$48$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\ ]^{2}_{3}$ |
$[\ ]^{2}_{3}$ |
$[11, 11, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z + 1$ |
$[1, 2, 4, 16]$ |
2.1.8.18c1.6 |
2 |
$x^{8} + 2 x^{4} + 4 x^{3} + 4 x^{2} + 6$ |
$V_4^2:(S_3\times C_2)$ (as 8T41) |
$192$ |
$1$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3}]^{2}_{3}$ |
$[\frac{1}{3},\frac{1}{3}]^{2}_{3}$ |
$[11, 10, 4, 0]$ |
$[1, 1]$ |
$z^4 + 1,z + 1$ |
$[1, 2, 4, 16]$ |