Properties

Label 2.1.8.18c1.3
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(18\)
Galois group $V_4^2:(S_3\times C_2)$ (as 8T41)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 2 x^{4} + 4 x^{3} + 4 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, \frac{8}{3}, \frac{8}{3}]$
Visible Swan slopes:$[1,\frac{5}{3},\frac{5}{3}]$
Means:$\langle\frac{1}{2}, \frac{13}{12}, \frac{11}{8}\rangle$
Rams:$(1, \frac{7}{3}, \frac{7}{3})$
Jump set:$[1, 2, 11, 19]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 2 x^{4} + 4 x^{3} + 4 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[11, 10, 4, 0]$

Invariants of the Galois closure

Galois degree: $192$
Galois group: $C_2^3:S_4$ (as 8T41)
Inertia group: $C_2^3:A_4$ (as 8T33)
Wild inertia group: $C_2^2\wr C_2$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]$
Galois mean slope: $2.3958333333333335$
Galois splitting model:$x^{8} - 4 x^{7} + 16 x^{6} - 32 x^{5} + 56 x^{4} - 56 x^{3} + 44 x^{2} - 20 x + 5$