Properties

Label 2.1.14.20a1.7
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(20\)
Galois group $C_2\wr C_7:C_3$ (as 14T44)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{7} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $14$
Ramification index $e$: $14$
Residue field degree $f$: $1$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{1}{2}\rangle$
Rams:$(7)$
Jump set:$[7, 25]$
Roots of unity:$2$

Intermediate fields

2.1.7.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{7} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1$,$z + 1$
Associated inertia:$3$,$1$
Indices of inseparability:$[7, 0]$

Invariants of the Galois closure

Galois degree: $2688$
Galois group: $C_2\wr C_7:C_3$ (as 14T44)
Inertia group: $C_2\wr C_7$ (as 14T29)
Wild inertia group: $C_2^7$
Galois unramified degree: $3$
Galois tame degree: $7$
Galois Artin slopes: $[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, \frac{10}{7}, \frac{10}{7}, \frac{10}{7}, 2]$
Galois Swan slopes: $[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{3}{7},\frac{3}{7},\frac{3}{7},1]$
Galois mean slope: $1.6941964285714286$
Galois splitting model: $x^{14} - 21 x^{12} - 7 x^{10} + 707 x^{8} + 2415 x^{6} + 2961 x^{4} + 1323 x^{2} + 81$ Copy content Toggle raw display