Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.14.20a1.1 |
2 |
$x^{14} + 2 x^{7} + 2$ |
$(C_7:C_3) \times C_2$ (as 14T5) |
$42$ |
$2$ |
$[2]_{7}^{3}$ |
$[1]_{7}^{3}$ |
$[\ ]^{3}$ |
$[\ ]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 14]$ |
2.1.14.20a1.2 |
2 |
$x^{14} + 2 x^{7} + 6$ |
$(C_7:C_3) \times C_2$ (as 14T5) |
$42$ |
$2$ |
$[2]_{7}^{3}$ |
$[1]_{7}^{3}$ |
$[\ ]^{3}$ |
$[\ ]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 28]$ |
2.1.14.20a1.3 |
2 |
$x^{14} + 2 x^{13} + 2 x^{7} + 2$ |
$F_8:C_6$ (as 14T18) |
$336$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, 2]_{7}^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},1]_{7}^{3}$ |
$[\frac{8}{7},\frac{8}{7},\frac{8}{7}]^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 27]$ |
2.1.14.20a1.4 |
2 |
$x^{14} + 2 x^{13} + 2 x^{7} + 6$ |
$F_8:C_6$ (as 14T18) |
$336$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, 2]_{7}^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},1]_{7}^{3}$ |
$[\frac{8}{7},\frac{8}{7},\frac{8}{7}]^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 27]$ |
2.1.14.20a1.5 |
2 |
$x^{14} + 2 x^{11} + 2 x^{7} + 2$ |
$F_8:C_6$ (as 14T18) |
$336$ |
$2$ |
$[\frac{10}{7}, \frac{10}{7}, \frac{10}{7}, 2]_{7}^{3}$ |
$[\frac{3}{7},\frac{3}{7},\frac{3}{7},1]_{7}^{3}$ |
$[\frac{10}{7},\frac{10}{7},\frac{10}{7}]^{3}$ |
$[\frac{3}{7},\frac{3}{7},\frac{3}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 25]$ |
2.1.14.20a1.6 |
2 |
$x^{14} + 2 x^{11} + 2 x^{7} + 6$ |
$F_8:C_6$ (as 14T18) |
$336$ |
$2$ |
$[\frac{10}{7}, \frac{10}{7}, \frac{10}{7}, 2]_{7}^{3}$ |
$[\frac{3}{7},\frac{3}{7},\frac{3}{7},1]_{7}^{3}$ |
$[\frac{10}{7},\frac{10}{7},\frac{10}{7}]^{3}$ |
$[\frac{3}{7},\frac{3}{7},\frac{3}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 25]$ |
2.1.14.20a1.7 |
2 |
$x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{7} + 2$ |
$C_2\wr C_7:C_3$ (as 14T44) |
$2688$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, \frac{10}{7}, \frac{10}{7}, \frac{10}{7}, 2]_{7}^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{3}{7},\frac{3}{7},\frac{3}{7},1]_{7}^{3}$ |
$[\frac{8}{7},\frac{8}{7},\frac{8}{7},\frac{10}{7},\frac{10}{7},\frac{10}{7}]^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{3}{7},\frac{3}{7},\frac{3}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 25]$ |
2.1.14.20a1.8 |
2 |
$x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{7} + 6$ |
$C_2\wr C_7:C_3$ (as 14T44) |
$2688$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, \frac{10}{7}, \frac{10}{7}, \frac{10}{7}, 2]_{7}^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{3}{7},\frac{3}{7},\frac{3}{7},1]_{7}^{3}$ |
$[\frac{8}{7},\frac{8}{7},\frac{8}{7},\frac{10}{7},\frac{10}{7},\frac{10}{7}]^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{3}{7},\frac{3}{7},\frac{3}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 25]$ |
2.1.14.20a1.9 |
4 |
$x^{14} + 2 x^{9} + 2 x^{7} + 2$ |
$C_2\wr C_7:C_3$ (as 14T44) |
$2688$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, \frac{12}{7}, \frac{12}{7}, \frac{12}{7}, 2]_{7}^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{5}{7},1]_{7}^{3}$ |
$[\frac{8}{7},\frac{8}{7},\frac{8}{7},\frac{12}{7},\frac{12}{7},\frac{12}{7}]^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{5}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 23]$ |
2.1.14.20a1.10 |
4 |
$x^{14} + 2 x^{9} + 2 x^{7} + 6$ |
$C_2\wr C_7:C_3$ (as 14T44) |
$2688$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, \frac{12}{7}, \frac{12}{7}, \frac{12}{7}, 2]_{7}^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{5}{7},1]_{7}^{3}$ |
$[\frac{8}{7},\frac{8}{7},\frac{8}{7},\frac{12}{7},\frac{12}{7},\frac{12}{7}]^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{5}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 23]$ |
2.1.14.20a1.11 |
4 |
$x^{14} + 2 x^{13} + 2 x^{9} + 2 x^{7} + 2$ |
$F_8:C_6$ (as 14T18) |
$336$ |
$2$ |
$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}, 2]_{7}^{3}$ |
$[\frac{5}{7},\frac{5}{7},\frac{5}{7},1]_{7}^{3}$ |
$[\frac{12}{7},\frac{12}{7},\frac{12}{7}]^{3}$ |
$[\frac{5}{7},\frac{5}{7},\frac{5}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 23]$ |
2.1.14.20a1.12 |
4 |
$x^{14} + 2 x^{13} + 2 x^{9} + 2 x^{7} + 6$ |
$F_8:C_6$ (as 14T18) |
$336$ |
$2$ |
$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}, 2]_{7}^{3}$ |
$[\frac{5}{7},\frac{5}{7},\frac{5}{7},1]_{7}^{3}$ |
$[\frac{12}{7},\frac{12}{7},\frac{12}{7}]^{3}$ |
$[\frac{5}{7},\frac{5}{7},\frac{5}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 23]$ |
2.1.14.20a1.13 |
4 |
$x^{14} + 2 x^{11} + 2 x^{9} + 2 x^{7} + 2$ |
$C_2\wr C_7:C_3$ (as 14T44) |
$2688$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, \frac{12}{7}, \frac{12}{7}, \frac{12}{7}, 2]_{7}^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{5}{7},1]_{7}^{3}$ |
$[\frac{8}{7},\frac{8}{7},\frac{8}{7},\frac{12}{7},\frac{12}{7},\frac{12}{7}]^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{5}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 23]$ |
2.1.14.20a1.14 |
4 |
$x^{14} + 2 x^{11} + 2 x^{9} + 2 x^{7} + 6$ |
$C_2\wr C_7:C_3$ (as 14T44) |
$2688$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}, \frac{12}{7}, \frac{12}{7}, \frac{12}{7}, 2]_{7}^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{5}{7},1]_{7}^{3}$ |
$[\frac{8}{7},\frac{8}{7},\frac{8}{7},\frac{12}{7},\frac{12}{7},\frac{12}{7}]^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{5}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 23]$ |
2.1.14.20a1.15 |
4 |
$x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{9} + 2 x^{7} + 2$ |
$F_8:C_6$ (as 14T18) |
$336$ |
$2$ |
$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}, 2]_{7}^{3}$ |
$[\frac{5}{7},\frac{5}{7},\frac{5}{7},1]_{7}^{3}$ |
$[\frac{12}{7},\frac{12}{7},\frac{12}{7}]^{3}$ |
$[\frac{5}{7},\frac{5}{7},\frac{5}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 23]$ |
2.1.14.20a1.16 |
4 |
$x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{9} + 2 x^{7} + 6$ |
$F_8:C_6$ (as 14T18) |
$336$ |
$2$ |
$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}, 2]_{7}^{3}$ |
$[\frac{5}{7},\frac{5}{7},\frac{5}{7},1]_{7}^{3}$ |
$[\frac{12}{7},\frac{12}{7},\frac{12}{7}]^{3}$ |
$[\frac{5}{7},\frac{5}{7},\frac{5}{7}]^{3}$ |
$[7, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 23]$ |