Properties

Label 2.1.14.20a1.6
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(20\)
Galois group $F_8:C_6$ (as 14T18)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + 2 x^{11} + 2 x^{7} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $14$
Ramification index $e$: $14$
Residue field degree $f$: $1$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $-i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{1}{2}\rangle$
Rams:$(7)$
Jump set:$[7, 25]$
Roots of unity:$2$

Intermediate fields

2.1.7.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{14} + 2 x^{11} + 2 x^{7} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1$,$z + 1$
Associated inertia:$3$,$1$
Indices of inseparability:$[7, 0]$

Invariants of the Galois closure

Galois degree: $336$
Galois group: $F_8:C_6$ (as 14T18)
Inertia group: $C_2\times F_8$ (as 14T9)
Wild inertia group: $C_2^4$
Galois unramified degree: $3$
Galois tame degree: $7$
Galois Artin slopes: $[\frac{10}{7}, \frac{10}{7}, \frac{10}{7}, 2]$
Galois Swan slopes: $[\frac{3}{7},\frac{3}{7},\frac{3}{7},1]$
Galois mean slope: $1.6785714285714286$
Galois splitting model: $x^{14} - 84 x^{10} + 140 x^{8} + 784 x^{6} - 1008 x^{2} - 432$ Copy content Toggle raw display