Properties

Label 2.1.14.14a1.2
Base \(\Q_{2}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(14\)
Galois group $F_8:C_3$ (as 14T11)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + 2 x^{2} + 2 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $14$
Ramification index $e$: $14$
Residue field degree $f$: $1$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{8}{7}]$
Visible Swan slopes:$[\frac{1}{7}]$
Means:$\langle\frac{1}{14}\rangle$
Rams:$(1)$
Jump set:$[7, 15]$
Roots of unity:$2$

Intermediate fields

2.1.7.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{14} + 2 x^{2} + 2 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1$,$z + 1$
Associated inertia:$3$,$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $168$
Galois group: $F_8:C_3$ (as 14T11)
Inertia group: $F_8$ (as 14T6)
Wild inertia group: $C_2^3$
Galois unramified degree: $3$
Galois tame degree: $7$
Galois Artin slopes: $[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]$
Galois Swan slopes: $[\frac{1}{7},\frac{1}{7},\frac{1}{7}]$
Galois mean slope: $1.1071428571428572$
Galois splitting model: $x^{14} - 7 x^{12} - 28 x^{11} + 7 x^{10} + 168 x^{9} + 147 x^{8} - 272 x^{7} - 413 x^{6} + 364 x^{5} + 511 x^{4} - 196 x^{3} - 427 x^{2} - 420 x + 173$ Copy content Toggle raw display