$x^{14} + 2 c_{2} x^{2} + 2 a_{1} x + 2$ |
Select desired size of Galois group.
| | Galois groups of order 168 |
|
|
$F_8:C_3$ (as 14T11) |
hidden slopes
|
$[\frac{8}{7},\frac{8}{7}]^{3}$ |
1 |
|
| | Galois groups of order 336 |
|
|
$F_8:C_6$ (as 14T18) |
hidden slopes
|
$[\frac{8}{7},\frac{8}{7}]^{6}$ |
1 |
|
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.14.14a1.1 |
1 |
$x^{14} + 2 x + 2$ |
$F_8:C_6$ (as 14T18) |
$336$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]_{7}^{6}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7}]_{7}^{6}$ |
$[\frac{8}{7},\frac{8}{7}]^{6}$ |
$[\frac{1}{7},\frac{1}{7}]^{6}$ |
$[1, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 15]$ |
2.1.14.14a1.2 |
1 |
$x^{14} + 2 x^{2} + 2 x + 2$ |
$F_8:C_3$ (as 14T11) |
$168$ |
$2$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]_{7}^{3}$ |
$[\frac{1}{7},\frac{1}{7},\frac{1}{7}]_{7}^{3}$ |
$[\frac{8}{7},\frac{8}{7}]^{3}$ |
$[\frac{1}{7},\frac{1}{7}]^{3}$ |
$[1, 0]$ |
$[3, 1]$ |
$z^{12} + z^{10} + z^8 + z^6 + z^4 + z^2 + 1,z + 1$ |
$[7, 15]$ |
Download
displayed columns for
results