Defining polynomial
\(x^{10} + 2 x + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $10$ |
Ramification index $e$: | $10$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[\frac{6}{5}]$ |
Visible Swan slopes: | $[\frac{1}{5}]$ |
Means: | $\langle\frac{1}{10}\rangle$ |
Rams: | $(1)$ |
Jump set: | $[5, 11]$ |
Roots of unity: | $2$ |
Intermediate fields
2.1.5.4a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{10} + 2 x + 2 \)
|
Ramification polygon
Residual polynomials: | $z^8 + z^6 + 1$,$z + 1$ |
Associated inertia: | $4$,$1$ |
Indices of inseparability: | $[1, 0]$ |
Invariants of the Galois closure
Galois degree: | $320$ |
Galois group: | $C_2^4:F_5$ (as 10T24) |
Inertia group: | $C_2^4:C_5$ (as 10T8) |
Wild inertia group: | $C_2^4$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $5$ |
Galois Artin slopes: | $[\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}]$ |
Galois Swan slopes: | $[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5}]$ |
Galois mean slope: | $1.175$ |
Galois splitting model: | $x^{10} - 5 x^{8} - 10 x^{5} - 5 x^{2} + 1$ |