Show commands: Magma
Group invariants
Abstract group: | $(C_2^4 : C_5):C_4$ |
| |
Order: | $320=2^{6} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $10$ |
| |
Transitive number $t$: | $24$ |
| |
CHM label: | $[2^{4}]F(5)$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,7,9,3)(2,4,8,6)$, $(1,3,5,7,9)(2,4,6,8,10)$, $(2,7)(5,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $20$: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $F_5$
Low degree siblings
10T25, 16T711, 20T77, 20T78, 20T79, 20T80, 20T83, 20T88, 32T9312, 40T206, 40T207, 40T296, 40T297, 40T298, 40T299, 40T300, 40T301, 40T302, 40T303Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4},1^{2}$ | $5$ | $2$ | $4$ | $( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
2B | $2^{2},1^{6}$ | $10$ | $2$ | $2$ | $(3,8)(4,9)$ |
2C | $2^{4},1^{2}$ | $20$ | $2$ | $4$ | $( 2,10)( 3, 9)( 4, 8)( 5, 7)$ |
4A | $4^{2},1^{2}$ | $20$ | $4$ | $6$ | $( 2, 5, 7,10)( 3, 9, 8, 4)$ |
4B | $4,2^{3}$ | $40$ | $4$ | $6$ | $( 1, 6)( 2, 5)( 3, 4, 8, 9)( 7,10)$ |
4C1 | $4^{2},1^{2}$ | $40$ | $4$ | $6$ | $( 2, 9,10, 3)( 4, 5, 8, 7)$ |
4C-1 | $4^{2},1^{2}$ | $40$ | $4$ | $6$ | $( 2, 3,10, 9)( 4, 7, 8, 5)$ |
5A | $5^{2}$ | $64$ | $5$ | $8$ | $( 1, 9, 2,10, 8)( 3, 6, 4, 7, 5)$ |
8A1 | $8,2$ | $40$ | $8$ | $8$ | $( 1, 6)( 2, 8, 5, 4, 7, 3,10, 9)$ |
8A-1 | $8,2$ | $40$ | $8$ | $8$ | $( 1, 6)( 2, 9,10, 3, 7, 4, 5, 8)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 2B | 2C | 4A | 4B | 4C1 | 4C-1 | 5A | 8A1 | 8A-1 | ||
Size | 1 | 5 | 10 | 20 | 20 | 40 | 40 | 40 | 64 | 40 | 40 | |
2 P | 1A | 1A | 1A | 1A | 2A | 2B | 2C | 2C | 5A | 4A | 4A | |
5 P | 1A | 2A | 2B | 2C | 4A | 4B | 4C1 | 4C-1 | 1A | 8A1 | 8A-1 | |
Type | ||||||||||||
320.1635.1a | R | |||||||||||
320.1635.1b | R | |||||||||||
320.1635.1c1 | C | |||||||||||
320.1635.1c2 | C | |||||||||||
320.1635.4a | R | |||||||||||
320.1635.5a | R | |||||||||||
320.1635.5b | R | |||||||||||
320.1635.5c1 | C | |||||||||||
320.1635.5c2 | C | |||||||||||
320.1635.10a | R | |||||||||||
320.1635.10b | R |
Regular extensions
$f_{ 1 } =$ |
$x^{10} - 15 x^{8} + 100 x^{6} + \left(-5 t - 250\right) x^{4} + 30 t x^{2} - t^{2}$
|