Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $24$ | |
| Group : | $(C_2^4 : C_5):C_4$ | |
| CHM label : | $[2^{4}]F(5)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,9,3)(2,4,8,6), (1,3,5,7,9)(2,4,6,8,10), (2,7)(5,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 20: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $F_5$
Low degree siblings
10T25, 16T711, 20T77, 20T78, 20T79, 20T80, 20T83, 20T88, 32T9312, 40T206, 40T207, 40T296, 40T297, 40T298, 40T299, 40T300, 40T301, 40T302, 40T303Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 4, 9)( 5,10)$ |
| $ 4, 4, 1, 1 $ | $40$ | $4$ | $( 2, 3, 5, 4)( 7, 8,10, 9)$ |
| $ 4, 4, 1, 1 $ | $40$ | $4$ | $( 2, 4, 5, 3)( 7, 9,10, 8)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $20$ | $2$ | $( 2, 5)( 3, 4)( 7,10)( 8, 9)$ |
| $ 4, 4, 1, 1 $ | $20$ | $4$ | $( 2, 5, 7,10)( 3, 4, 8, 9)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| $ 4, 2, 2, 2 $ | $40$ | $4$ | $( 1, 2)( 3, 5, 8,10)( 4, 9)( 6, 7)$ |
| $ 5, 5 $ | $64$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)$ |
| $ 8, 2 $ | $40$ | $8$ | $( 1, 2, 4, 8, 6, 7, 9, 3)( 5,10)$ |
| $ 8, 2 $ | $40$ | $8$ | $( 1, 2, 5, 9, 6, 7,10, 4)( 3, 8)$ |
Group invariants
| Order: | $320=2^{6} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [320, 1635] |
| Character table: |
2 6 5 3 3 4 4 6 3 . 3 3
5 1 . . . . . . . 1 . .
1a 2a 4a 4b 2b 4c 2c 4d 5a 8a 8b
2P 1a 1a 2b 2b 1a 2c 1a 2a 5a 4c 4c
3P 1a 2a 4b 4a 2b 4c 2c 4d 5a 8b 8a
5P 1a 2a 4a 4b 2b 4c 2c 4d 1a 8a 8b
7P 1a 2a 4b 4a 2b 4c 2c 4d 5a 8b 8a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1 -1 -1
X.3 1 1 A -A -1 -1 1 -1 1 A -A
X.4 1 1 -A A -1 -1 1 -1 1 -A A
X.5 4 4 . . . . 4 . -1 . .
X.6 5 1 -1 -1 1 1 -3 -1 . 1 1
X.7 5 1 1 1 1 1 -3 -1 . -1 -1
X.8 5 1 A -A -1 -1 -3 1 . -A A
X.9 5 1 -A A -1 -1 -3 1 . A -A
X.10 10 -2 . . -2 2 2 . . . .
X.11 10 -2 . . 2 -2 2 . . . .
A = -E(4)
= -Sqrt(-1) = -i
|