Properties

Label 2.1.10.10a
Base 2.1.1.0a1.1
Degree \(10\)
e \(10\)
f \(1\)
c \(10\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{10} + 2 c_{2} x^{2} + 2 a_{1} x + 2$

Invariants

Residue field characteristic: $2$
Degree: $10$
Base field: $\Q_{2}$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $10$
Artin slopes: $[\frac{6}{5}]$
Swan slopes: $[\frac{1}{5}]$
Means: $\langle\frac{1}{10}\rangle$
Rams: $(1)$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1$

Diagrams

Varying

Indices of inseparability: $[1,0]$
Associated inertia: $[4,1]$
Jump Set: $[5,11]$

Galois groups and Hidden Artin slopes

Fields


Showing all 2

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.10.10a1.1 $x^{10} + 2 x + 2$ $(C_2^4 : C_5):C_4$ (as 10T24) $320$ $2$ $[\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}]_{5}^{4}$ $[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5}]_{5}^{4}$ $[\frac{6}{5},\frac{6}{5},\frac{6}{5}]^{4}$ $[\frac{1}{5},\frac{1}{5},\frac{1}{5}]^{4}$ $[1, 0]$ $[4, 1]$ $z^8 + z^6 + 1,z + 1$ $[5, 11]$
2.1.10.10a1.2 $x^{10} + 2 x^{2} + 2 x + 2$ $(C_2^4 : C_5):C_4$ (as 10T25) $320$ $2$ $[\frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}]_{5}^{4}$ $[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5}]_{5}^{4}$ $[\frac{6}{5},\frac{6}{5},\frac{6}{5}]^{4}$ $[\frac{1}{5},\frac{1}{5},\frac{1}{5}]^{4}$ $[1, 0]$ $[4, 1]$ $z^8 + z^6 + 1,z + 1$ $[5, 11]$
  displayed columns for results