Defining polynomial
$( x^{2} + 108 x + 6 )^{3} + 109 x$
|
Invariants
Base field: | $\Q_{109}$ |
Degree $d$: | $6$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $4$ |
Discriminant root field: | $\Q_{109}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{109})$ $=$$\Gal(K/\Q_{109})$: | $C_6$ |
This field is Galois and abelian over $\Q_{109}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $11880 = (109^{ 2 } - 1)$ |
Intermediate fields
$\Q_{109}(\sqrt{2})$, 109.1.3.2a1.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{109}(\sqrt{2})$ $\cong \Q_{109}(t)$ where $t$ is a root of
\( x^{2} + 108 x + 6 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + 109 t \)
$\ \in\Q_{109}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^2 + 3 z + 3$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $6$ |
Galois group: | $C_6$ (as 6T1) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $3$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.6666666666666666$ |
Galois splitting model: |
$x^{6} - x^{5} + 2 x^{4} + 5138 x^{3} + 103321 x^{2} + 767139 x + 5027445$
|