Defining polynomial over unramified subextension
$x^{3} + 109d_{0}$ |
Invariants
Residue field characteristic: | $109$ |
Degree: | $6$ |
Base field: | $\Q_{109}$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $4$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $3$ (complete) |
Ambiguity: | $6$ |
Mass: | $1$ |
Absolute Mass: | $1/2$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 3
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
109.2.3.4a1.1 | $( x^{2} + 108 x + 6 )^{3} + 109 x$ | $C_6$ (as 6T1) | $6$ | $6$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
109.2.3.4a1.2 | $( x^{2} + 108 x + 6 )^{3} + 109$ | $C_6$ (as 6T1) | $6$ | $6$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
109.2.3.4a1.3 | $( x^{2} + 108 x + 6 )^{3} + 109 x + 11227$ | $C_6$ (as 6T1) | $6$ | $6$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |