Properties

Label 109.1.4.3a1.1
Base \(\Q_{109}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(3\)
Galois group $C_4$ (as 4T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 109\) Copy content Toggle raw display

Invariants

Base field: $\Q_{109}$
Degree $d$: $4$
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{109}(\sqrt{109})$
Root number: $-1$
$\Aut(K/\Q_{109})$ $=$$\Gal(K/\Q_{109})$: $C_4$
This field is Galois and abelian over $\Q_{109}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$108 = (109 - 1)$

Intermediate fields

$\Q_{109}(\sqrt{109})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{109}$
Relative Eisenstein polynomial: \( x^{4} + 109 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 4 z^2 + 6 z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $4$
Galois group: $C_4$ (as 4T1)
Inertia group: $C_4$ (as 4T1)
Wild inertia group: $C_1$
Galois unramified degree: $1$
Galois tame degree: $4$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.75$
Galois splitting model:$x^{4} - x^{3} + 14 x^{2} + 34 x + 393$