Defining polynomial
$x^{4} + 109d_{0}$ |
Invariants
Residue field characteristic: | $109$ |
Degree: | $4$ |
Base field: | $\Q_{109}$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $3$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $4$ (complete) |
Ambiguity: | $4$ |
Mass: | $1$ |
Absolute Mass: | $1$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 4
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
109.1.4.3a1.1 | $x^{4} + 109$ | $C_4$ (as 4T1) | $4$ | $4$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
109.1.4.3a1.2 | $x^{4} + 654$ | $C_4$ (as 4T1) | $4$ | $4$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
109.1.4.3a1.3 | $x^{4} + 3924$ | $C_4$ (as 4T1) | $4$ | $4$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
109.1.4.3a1.4 | $x^{4} + 11663$ | $C_4$ (as 4T1) | $4$ | $4$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |