show · modcurve.standard all knowls · up · search:

Let MM and NN denote positive integers and \ell a prime. Each modular curve below "parametrizes" elliptic curves with a particular type of level structure. Standard modular curves include:

X0(N)X_0(N), X1(N)X_1(N), X±1(N)X_{\pm 1}(N), Xarith,1(M,MN)X_{\mathrm{arith},1}(M,MN), Xarith,±1(M,MN)X_{\mathrm{arith},\pm 1}(M,MN), X(N)X(N), Xsp(N)X_{\mathrm{sp}}(N), Xsp+(N)X_{\mathrm{sp}}^+(N), Xns(N)X_{\mathrm{ns}}(N), Xns+(N)X_{\mathrm{ns}}^+(N), XS4()X_{S_4}(\ell), Xarith(N)X_{\mathrm{arith}}(N)

The curves above are all modular curves specified by an open subgroup HGL2(Z^)H \le \GL_2(\widehat{\Z}) of level NN, MNMN, or \ell.

Authors:
Knowl status:
  • Review status: beta
  • Last edited by Asimina Hamakiotes on 2024-12-10 14:57:13
Referred to by:
History: (expand/hide all) Differences (show/hide)